Introduction Applied Text Mining

Ayoub Bagheri

Contents

	•	•
		}
	4	ł
Course Logistics	4	1
Course materials	4	1
Teachers	4	1
Program	6	3
Goal of the course	6	3
Python?	6	3
How familiar are you with Python?	6	3
Python IDE?	6	3
Google Colab?	7	7
Python	7	7
Google Colab	8	3
What is Text Mining?	8	3
Text mining in an example	8	3
	9)
Example	10)
Example	10)
Language is hard!	11	Ĺ
Text mining	11	Ĺ
Can be quite effective!	12	2
Process & Tasks	12	2
Text mining process	12	2
Text mining tasks	12	2
And more in NLP	13	3

Text Preprocessing	13
Text preprocessing	13
Typical steps	13
Tokenization/Segmentation	13
N-grams	14
Part Of Speech (POS) tagging	14
Vector Space Model	14
Basic idea	14
How to represent a document	15
Vector space model	15
Vector space model	15
Vector space model	15
An illustration of VS model	16
VSM: How do we represent vectors?	16
Bag of Words (BOW)	16
Binary	16
Term Frequency	17
TF: Document - Term Matrix (DTM)	17
TFiDF	17
TFiDF: Document - Term matrix (DTM)	18
How to define a good similarity metric?	18
How to define a good similarity metric?	19
Next	19
Summary	19
Summary	19
Practical 1	19

Did a poet with donkey ears write the oldest anthem in the world?

https://dh2017.adho.org/abstracts/079/079.pdf

Who was the best Friend?

https://rss.onlinelibrary.wiley.com/doi/epdf/10.1111/1740-9713.01574

Automatic detection of ICD10 codes in cardiology discharge letters

https://www.nature.com/articles/s41746-021-00404-9

Box 1: An example of a Dutch discharge letter from the dataset

Bovengenoemde patiënt was apgenomen op <DATUM-1> op de <PERSOON-1> voor het specialisme Cardiologie.
Reden van opneme STEMI inferior
Cardiale voorgeschiedenis. Blanco
Cardiovasculier «islofactoren: Roben(:) Diabetes(:) Hypertensie(!) Hypercholes-

Cardiovasculaire risicofactoren: Roken(-) Diabetes(-) Hypertenis(e() Hypertenis(e

geen.
Complicaties: geen Ontslag naar: CCU <INSTELLING-2>.

Course Logistics

Course materials

You can access the course materials quickly from https://ayoubbagheri.nl/applied_tm/

Teachers

Anastasia

Arjan

Luka

Dong

Daniel

Program

Time	Monday	Tuesday	Wednesday	Thursday	Friday
9:00 - 10:30	Lecture 1	Lecture 3	Lecture 5	Lecture 7	Lecture 9
	Break	Break	Break	Break	Break
10:45 - 11:45	Practical 1	Practical 3	Practical 5	Practical 7	Practical 9
11:45 - 12:15	Discussion 1	Discussion 3	Discussion 5	Discussion 7	Discussion 9
	Lunch	Lunch	Lunch	Lunch	Lunch
13:45 - 15:15	T / 0	T 1 4	-		
10.40 10.10	Lecture 2	Lecture 4	Lecture 6	Lecture 8	Lecture 10
10.40 10.10	Break	Break	Break	Break	Break
15:30 - 16:30	20004102				

Goal of the course

- Text data are everywhere!
- A lot of world's data are in the format of unstructured text
- This course teaches
 - text mining techniques
 - using Python
 - on a variety of applications
 - in many domains.

Python?

How familiar are you with Python?

• What is your experience level with Python?

Python IDE?

• Which Python IDE do you mostly use? If you use more than one environment fill in the other text boxes.

Google Colab?

• How familiar are you with Google Colab? (1: limited to 5: expert)

Python

- Latest: Python 3.11.4
- Follow the tutorial on Python in Google Colab for the Applied Text Mining course: link
- Python For Beginners
 - https://www.python.org/about/gettingstarted/
- The Python Language Reference
 - https://docs.python.org/3/reference/
- Python 3.11.4 documentation
 - https://docs.python.org/3/

Google Colab

- Colaboratory, or "Colab" for short, allows you to write and execute Python in your browser, with
 - Zero configuration required
 - Free access to GPUs
 - Easy sharing
- [Intro](https://colab.research.google.com/notebooks/intro.ipynb)
- Cheat-sheet for Google Colab
- Keyboard shortcuts:

Actions	Colab	Jupyter
show keyboard shortcuts	Ctrl/Cmd M H	Н
Insert code cell above	Ctrl/Cmd M A	A
Insert code cell below	Ctrl/Cmd M B	В
Delete cell/selection	Ctrl/Cmd M D	DD
Interrupt execution	Ctrl/Cmd M I	II
Convert to code cell	Ctrl/Cmd M Y	Υ
Convert to text cell	Ctrl/Cmd M M	М
Split at cursor	Ctrl/Cmd M -	Ctrl Shift -

What is Text Mining?

Text mining in an example

- This is Garry!
- Garry works at Bol.com (a webshop in the Netherlands)
- He works in the dep of Customer relationship management.
- He uses Excel to read and search customers' reviews, extract aspects they wrote their reviews on, and identify their sentiments.
- Curious about his job? See two examples!

This is a nice book for both young and old. It gives beautiful life lessons in a fun way. Definitely worth the money!

- + Educational
- + Funny
- + Price

Nice story for older children.

- + Funny
- Readability

ANTOINE DE SAINT-EXUPÉRY

Example

- Garry likes his job a lot, but sometimes it is frustrating!
- This is mainly because their company is expanding quickly!
- Garry decides to hire **Larry** as his assistant.

Example

- Still, a lot to do for two people!
- Garry has some budget left to hire another assistant for couple of years!
- He decides to hire **Harry** too!
- Still, manual labeling using Excel is labor-intensive!

Language is hard!

- Different things can mean more or less the same ("data science" vs. "statistics")
- Context dependency ("You have very nice shoes");
- Same words with different meanings ("to sanction", "bank");
- Lexical ambiguity ("we saw her duck")
- Irony, sarcasm ("That's just what I needed today!", "Great!", "Well, what a surprise.")
- Figurative language ("He has a heart of stone")
- Negation ("not good" vs. "good"), spelling variations, jargon, abbreviations
- All the above are different over languages, 99% of work is on English!

Text mining

• "the discovery by computer of new, previously unknown information, by automatically extracting information from different written resources" Hearst (1999)

- Text mining is about looking for patterns in text, in a similar way that data mining can be loosely described as looking for patterns in data.
- Text mining describes a set of linguistic, statistical, and machine learning techniques that model and structure the information content of textual sources. (Wikipedia)

Can be quite effective!

- We won't solve linguistics . . .
- In spite of the problems, text mining can be quite effective!

Process & Tasks

Text mining process

Text mining tasks

- Text classification
- Text clustering
- Sentiment analysis
- Feature selection
- Topic modelling
- Responsible text mining
- Text summarization

And more in NLP

source: https://nlp.stanford.edu/~wcmac/papers/20140716-UNLU.pdf

Text Preprocessing

Text preprocessing

- is an approach for cleaning and noise removal of text data.
- brings your text into a form that is analyzable for your task.
- transforms text into a more digestible form so that machine learning algorithms can perform better.

Typical steps

- Tokenization ("text", "ming", "is", "the", "best", "!")
- Stemming ("lungs"→"lung") or Lemmatization ("were"→"is")
- Lowercasing ("Disease"→"disease")
- Stopword removal ("text ming is best!")
- Punctuation removal ("text ming is the best")
- Number removal ("I42"→"I")
- Spell correction ("hart"→"heart")

Not all of these are appropriate at all times!

Tokenization/Segmentation

• Split text into words and sentences

There was an earthquake near D.C. I've even felt it in Philadelphia, New York, etc.

```
There + was + an + earthquake + near + D.C.
```

```
I + ve + even + felt + it + in +
Philadelphia, + New + York, +
etc.
```

N-grams

- N-grams: a contiguous sequence of N tokens from a given piece of text
 - E.g., 'Text mining is to identify useful information.'
 - Bigrams: 'text_mining', 'mining_is', 'is_to', 'to_identify', 'identify_useful', 'useful_information', 'information_.'
 - Pros: capture local dependency and order
 - Cons: increase the vocabulary size

Part Of Speech (POS) tagging

• Annotate each word in a sentence with a part-of-speech.

```
I ate the spaghetti with meatballs.

Pro V Det N Prep N

John saw the saw and decided to take it to the table.

PN V Det N Con V Part V Pro Prep Det N
```

• Useful for subsequent syntactic parsing and word sense disambiguation.

Vector Space Model

Basic idea

- Text is "unstructured data"
- How do we get to something structured that we can compute with?
- Text must be represented somehow
- Represent the text as something that makes sense to a computer

How to represent a document

- Represent by a string?
 - No semantic meaning
- Represent by a list of sentences?
 - Sentence is just like a short document (recursive definition)
- Represent by a vector?
 - A vector is an ordered finite list of numbers.

Vector space model

- A vector space is a collection of vectors
- Represent documents by concept vectors
 - Each concept defines one dimension
 - k concepts define a high-dimensional space
 - Element of vector corresponds to concept weight

Vector space model

- Distance between the vectors in this concept space
 - Relationship among documents
- The process of converting text into numbers is called Vectorization

Vector space model

- Terms are generic features that can be extracted from text
- Typically, terms are single words, keywords, n-grams, or phrases
- Documents are represented as vectors of terms
- Each dimension (concept) corresponds to a separate term

$$d = (w_1, ..., w_n)$$

An illustration of VS model

• All documents are projected into this concept space

VSM: How do we represent vectors?

Bag of Words (BOW)

- Terms are words (more generally we can use n-grams)
- Weights are number of occurrences of the terms in the document
 - Binary
 - Term Frequency (TF)
 - Term Frequency inverse Document Frequency (TFiDF)

Binary

• Doc1: Text mining is to identify useful information.

• Doc2: Useful information is mined from text.

• Doc3: Apple is delicious.

	text	information	identify	mining	mined	is	useful	to	from	apple	delicious
Doc1	1	1	1	1	0	1	1	1	0	0	0
Doc2	1	1	0	0	1	1	1	0	1	0	0
Doc3	0	0	0	0	0	1	0	0	0	1	1

Term Frequency

• Idea: a term is more important if it occurs more frequently in a document

• TF formulas

- Let t(c,d) be the frequency count of term t in doc d

- Raw TF: tf(t,d) = c(t,d)

TF: Document - Term Matrix (DTM)

Bag of words

 $\cdot\,$ d1: "And God said, Let there be light: and there was light."

 $\cdot\,$ d2: "And God saw the light, that it was good: and God divided the light from the darkness."

· d3: "And God called the light Day, and the darkness he called Night. And the evening and the morning were the first day."

"Document - Term matrix" (DTM) (raw word counts)

	light	god	darkness	called	day	let	said	divided	good	saw	evening	first	morning	night
d1	2	1	0	0	0	1	1	0	0	0	0	0	0	0
d2	2	2	1	0	0	0	0	1	1	1	0	0	0	0
d3	1	1	1	2	2	0	0	0	0	0	1	1	1	1

TFiDF

• Idea: a term is more discriminative if it occurs a lot but only in fewer documents

Let $n_{d,t}$ denote the number of times the t-th term appears in the d-th document.

$$TF_{d,t} = \frac{n_{d,t}}{\sum_{i} n_{d,i}}$$

Let N denote the number of documents annot N_t denote the number of documents containing the t-th term.

$$IDF_t = log(\frac{N}{N_t})$$

TFiDF weight:

$$w_{d,t} = TF_{d,t} \cdot IDF_t$$

TFiDF: Document - Term matrix (DTM)

Bag of words

- · d1: "And God said, Let there be light: and there was light."
- $\cdot\,$ d2: "And God saw the light, that it was good: and God divided the light from the darkness."
- · d3: "And God called the light Day, and the darkness he called Night. And the evening and the morning were the first day."

"Document - Term matrix" (DTM) (tf-idf)

	light	god	darkness	called	day	let	said	divided	good	saw	evening	first	morning	night
d1	0	0	0.000	0.0	0.0	1.1	1.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0
d2	0	0	0.405	0.0	0.0	0.0	0.0	1.1	1.1	1.1	0.0	0.0	0.0	0.0
d3	0	0	0.405	2.2	2.2	0.0	0.0	0.0	0.0	0.0	1.1	1.1	1.1	1.1

How to define a good similarity metric?

How to define a good similarity metric?

• Euclidean distance

$$dist(d_i,d_j) = \sqrt{\sum_{t \in V} \left[tf(t,d_i)idf(t) - tf(t,d_j)idf(t)\right]^2}$$

- Longer documents will be penalized by the extra words
- We care more about how these two vectors are overlapped
- Cosine similarity
 - Angle between two vectors:

$$cosine(d_i, d_j) = \frac{V_{d_i}^T V_{d_j}}{|V_{d_i}|_2 \times |V_{d_j}|_2} \leftarrow \text{TF-IDF vector}$$

- Documents are normalized by length

Next

• Text classification

Summary

Summary

- Text data are everywhere!
- Language is hard!
- The basic problem of text mining is that text is not a neat data set
- Solution: text pre-processing & VSM

Practical 1