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Conceptual challenges

Wooclap time

Sentiment

• Sentiment =

– Feelings, Attitudes, Emotions, Opinions
– A thought, view, or attitude, especially one based mainly on emotion instead of reason

• Subjective impressions, not facts
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Plutchik wheel of emotions

Sentiment analysis

• Use of natural language processing (NLP) and computational techniques to automate the extraction
or classification of sentiment from unstructured text

• Other terms

– Opinion mining
– Sentiment mining
– Sentiment classification

Related tasks

• Subjectivity (neutral vs sentimental text)
• Opinion retrieval (opinion for a given query)
• Comparative opinion analysis
• Emotion detection (e.g., happiness, anger, sadness)
• Stance detection (in favor or against)
• Reputation analysis
• Sarcasm/Irony detection
• Hate-speech
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Sentiment analysis

• Can be applied in every topic & domain (non exhaustive list):

– Book: is this review positive or negative?
– Humanities: sentiment analysis for German historic plays.
– Products: what do people think about the new iPhone?
– Blog: how are people thinking about immigrants?
– Politics: who is going to win the election?
– Social Media: what is the trend today?
– Movie: is this review positive or negative (IMDB, Netflix)?
– Marketing: how is consumer confidence? Consumer attitudes?
– Healthcare: are patients happy with the hospital environment?

Opinion types

• Regular opinions: Sentiment/opinion expressions on some target entities

– Direct opinions:
∗ “The touch screen is really cool.”

– Indirect opinions:
∗ “After taking the drug, my pain has gone.”

• Comparative opinions: Comparison of more than one entity.

– E.g., “iPhone is better than Blackberry.”

Practical definition

• An opinion is a quintuple (entity, aspect, sentiment, holder, time) where

– entity: target entity (or object).
– aspect: aspect (or feature) of the entity.
– sentiment: +, -, or neu, a rating, or an emotion.
– holder: opinion holder.
– time: time when the opinion was expressed.

Sentiment analysis tasks

• Simplest task:

– Is the attitude of this text positive or negative?

• More complex:

– Is the attitude of this text positive, negative or neutral?
– Label the attitude of this text from 1 to 5

• Advanced:

– Detect the target, source, or complex opinion types
– Implicit opinions or aspects
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Document sentiment analysis

• Classify a document (e.g., a review) based on the overall sentiment of the opinion holder

– Classes: Positive, negative (possibly neutral)
∗ Neutral means no sentiment expressed
∗ “I believe he went home yesterday.”
∗ “I bought a iPhone yesterday”

• An example review:

– “I bought an iPhone a few days ago. It is such a nice phone, although a little large. The touch
screen is cool. The voice quality is great too. I simply love it!”

– Classification: positive or negative?

• It is basically a text classification problem

Sentence sentiment analysis

• Classify the sentiment expressed in a sentence

– Classes: positive, negative (possibly neutral)

• But bear in mind

– Explicit opinion: “I like this car.”
– Fact-implied opinion: “I bought this car yesterday and it broke today.”
– Mixed opinion: “Apple is doing well in this poor economy”

Aspect based sentiment analysis

Aspect/feature Based Summary of opinions about iPhone:

Aspect: Touch screen Positive: 212

The touch screen was really cool. The touch screen was so easy to use and can do amazing things.

. . . Negative: 6

The screen is easily scratched. I have a lot of difficulty in removing finger marks from the touch screen.
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Challenges

• Harder than topical classification, with which bag of words features perform well

• Must consider other features due to. . .

– Subtlety of sentiment expression
∗ irony (What a great car, it stopped working in the second day.)
∗ expression of sentiment using neutral words (The concert didn’t meet my expectations.)
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– Domain/context dependence
∗ words/phrases can mean different things in different contexts and domains (long queue vs

long battery life)
– Effect of syntax on semantics

Explicit and implicit aspects

• Explicit aspects: Aspects explicitly mentioned as nouns or noun phrases in a sentence

– “The picture quality is of this phone is great.”

• Implicit aspects: Aspects not explicitly mentioned in a sentence but are implied

– “This car is so expensive.”
– “This phone will not easily fit in a pocket.”
– “Included 16MB is stingy.”

Implicit aspects | Bagheri et al. 2013

An implicit aspect should satisfy the following conditions:

• The related aspect word does not occur in the review sentence explicitly.

• The aspect can be discovered by its surrounding words (e.g. opinion words) in the review sentence.
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Methods for sentiment analysis

• Lexicon-based methods

– Dictionary based: Using sentiment words and phrases (e.g., good, wonderful, awesome, trouble-
some, cost an arm and leg)

– Corpus-based: Using co-occurrence statistics or syntactic patterns embedded in text corpora

• Supervised learning methods: to classify reviews into positive and negative.

– Naïve Bayes
– Support Vector Machine
– Deep learning
– . . .

• Large Language Models

– BERT
– . . .

Lexicon-based Methods

Sentiment and other lexicons

• Lists of words that are associated with sentiment scores
• Can have binary scores (1, -1) or intensity scores (from 0 to 1)
• Positive/negative polarity, emotions, affective states, negation lists
• Manually annotated or created from our corpus
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Basic Lexicon Approach |

• Detect sentiment in two independent dimensions:

• Positive: {1, 2,. . . 5}

• Negative: {-5, -4,. . . -1}

• Example: “He is brilliant but boring”

– Sentiment(‘brilliant’) = +4
– Sentiment(‘boring’) = -2
– Overall sentiment = +2

LIWC (Linguistic Inquiry and Word Count) | Tausczik and Pennebaker (2011)

• 2,300 words, >70 classes

• Affective Processes

– negative emotion (bad, weird, hate, problem, tough)
– positive emotion (love, nice, sweet)

• Cognitive Processes

– Tentative (maybe, perhaps, guess), Inhibition (block, constraint)

• Pronouns, Negation (no, never), Quantifiers (few, many)

VADER Sentiment Analysis | Hutto and Gilbert (2014)

• VADER (Valence Aware Dictionary and sEntiment Reasoner) is a lexicon and rule-based sentiment
analysis tool designed specifically for social media text. Contains a pre-built lexicon of words that are
associated with sentiment scores ranging from -4 to +4

• Five generalizable heuristics based on grammatical and syntactical cues:

– Punctuation: “The food here is good!!!” vs “The food here is good.”
– Capitalization: “The food here is GREAT!” vs “The food here is great!”
– Degree modifiers: “The service here is extremely good” vs “The service here is good”
– The conjunction “but”: “The food here is great, but the service is horrible” has mixed sentiment
– For negation examine the tri-gram preceding a sentiment lexical feature: “The food here isn’t

really all that great”

Using WordNet to build lexicons

• WordNet: A lexical database of semantic relations between words including synonyms, antonyms,
hyponyms

• The synonyms are grouped into synsets with short definitions and usage examples

• Create positive (“good”) and negative seed-words (“terrible”)

• Find synonyms and antonyms

– Positive set: Add synonyms of positive words (“well”) and antonyms of negative words
– Negative set: Add synonyms of negative words (“awful”) and antonyms of positive words (”evil”)
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Bing Liu opinion lexicon | Hu and Liu (2004)

• Bing Liu’s Page on Opinion Mining

• 6,786 words

– 2,006 positive
– 4,783 negative

Bing Liu opinion lexicon | Hu and Liu (2004)

• Start with 30 adjectives that you know the semantic orientation (positive adjectives: great, fantastic,
nice, cool and negative adjectives: bad, dull)

• Use WordNet to predict the orientations of all the adjectives in the opinion word list

SentiWordNet | Esuli and Sebastiani (2006)

• https://github.com/aesuli/SentiWordNet

• All WordNet synsets automatically annotated for degrees of positivity, negativity, and neutral-
ity/objectiveness

• [estimable(J,3)] “may be computed or estimated”

Pos 0 Neg 0 Obj 1

• [estimable(J,1)] “deserving of respect or high regard”

Pos . 75 Neg 0 Obj . 25
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Turney algorithm | Turney (2002)

1. Extract a phrasal lexicon from reviews
2. Learn polarity of each phrase
3. Rate a review by the average polarity of its phrases

Extract two-word phrases with adjectives

The JJ tags indicate adjectives, the NN tags are nouns, the RB tags are adverbs, and the VB tags are verbs

How to measure polarity of a phrase?

• Positive phrases co-occur more with “excellent”

• Negative phrases co-occur more with “poor”

• But how to measure co-occurrence?

Pointwise Mutual Information

• PMI between two words:

– How much more do two words co-occur than if they were independent?
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How to estimate PMI

• P(word) estimated by hits(word)/N
• P(word1,word2) by hits(word1 NEAR word2)/Nˆ2
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Does phrase appear more with “poor” or “excellent”?
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Phrase POS.tags Polarity
online service JJ NN 2.8
online experience JJ NN 2.3
direct deposit JJ NN 1.3
local branch JJ NN 0.42
. . .
low fees JJ NNS 0.33
true service JJ NN -0.73
other bank JJ NN -0.85
inconveniently located JJ NN -1.5
Average 0.32

Phrase POS.tags Polarity
direct deposits JJ NNS 5.8
online web JJ NN 1.9
very handy RB JJ 1.4
. . .

virtual
monopoly

JJ NN -2
lesser evil RBR JJ -2.3
other problems JJ NNS -2.8
low funds JJ NNS -6.8
unethical practices JJ NNS -8.5
Average -1.2

Phrases from a thumbs-up (positive) review

Phrases from a thumbs-down (negative) review

Lexicon-based methods in summary

• Intuition
– Start with a seed set of words (“good”, “poor”)
– Find other words that have similar polarity:

∗ Using “and” and “but”
∗ Using words that occur nearby in the same document
∗ Using WordNet synonyms and antonyms

– Using rules based on punctuation, emoticons

Lexicon-based methods in summary (contd)

• Advantages:
– Can be domain-independent with general purpose lexicons
– Can become domain-dependent
– Can be easy to rationalise prediction output
– Can be applied when no training data is available

• Disadvantages:
– Compared to a well-trained, in-domain ML model they typically underperform
– Sensitive to affective dictionary coverage
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Supervised Methods

Basic steps

• Pre-processing and tokenization
• Feature representation
• Feature selection
• Classification
• Evaluation

Sentiment tokenization issues

• Deal with HTML and XML markup

• Twitter mark-up (names, hash tags)

• Capitalization (preserve forwords in all caps)

• Phone numbers, dates

• Emoticons

• Useful code:

– Christopher Potts sentiment tokenizer
– Brendan O’Connor twitter tokenizer

Potts emoticons

The danger of stemming

• The Porter stemmer identifies word suffixes and strips them off.

• But:

– objective (pos) and objection (neg) -> object
– competence (pos) and compete (neg) -> compet
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Features for supervised learning

• The problem has been studied by numerous researchers.

• Key: feature engineering. A large set of features have been tried by researchers. E.g.,

– Terms frequency and different IR weighting schemes
– Part of speech (POS) tags
– Opinion words and phrases
– Negations
– Stylistic
– Syntactic dependency

Negation

Add NOT_ to every word between negation and following punctuation:

Challenges of negation

• “terrible” vs “wasn’t terrible”

– The movie was terrible
– The movie was bad but wasn’t that terrible as they said

• The degree of the intensity shift varies from term to term for both positive and negative terms

Supervised sentiment analysis | Kiritchenko et al. (2014)

• A supervised statistical text classification approach based on surface, semantic, and sentiment features.
• For negation: estimate sentiment scores of individual terms in the presence of negation
• One lexicon for words in negated contexts and one for words in affirmative

Supervised sentiment analysis | Kiritchenko et al. (2014)

• Features:

– ngrams
– character ngrams
– all-caps: the number of tokens with all characters in upper case
– POS
– the number of negated contexts
– sentiment lexicons
– the number of hashtags, punctuation, emoticons, elongated words

• Classifier: linear-kernel SVM
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Supervised sentiment analysis | Kiritchenko et al. (2014)

Supervised sentiment analysis

• Advantages

– Lead to better performance compared to lexicon based approaches
– The output can be explained (most of the times)

• Disadvantages

– They need training data (distant supervision comes with limitations)
– They can’t capture the context
– Based on feature engineering that is a tedious task
– Not good performance in multiclass classification

Deep Learning

Sentiment-specific word embedding | Tang et al. (2014)

• Continuous word representations model the syntactic context of words but ignore the sentiment of text

• Good vs bad: They will be represented as neighboring word vectors

• Solution: Learn sentiment specific word embedding, which encodes sentiment information in the con-
tinuous representation of words

Sentiment-specific word embedding | Tang et al. (2014)

• Three neural networks to effectively incorporate the supervision from sentiment polarity of text in their
loss functions
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• Distant-supervised tweets

Word vector refinement | Yu et al. (2017)

• Start with a set of pre-trained word vectors and a sentiment lexicon
• Calculate the semantic similarity between each sentiment word and the other words in the lexicon

based on the cosine distance of their pre-trained vectors
• Select top-k most similar words as the nearest neighbors and re-rank according to sentiment scores

Word vector refinement | Yu et al. (2017)

• Refine the pre-trained vector of the target word to be:

– closer to its sentimentally similar neighbors,
– further away from its dissimilar neighbors, and
– not too far away from the original vector.

Sentiment analysis with BERT | Devlin et al. 2019

• Sentiment analysis was one of the tasks in the BERT paper
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Pre-trained models on SA

https://huggingface.co/blog/sentiment-analysis-python

• Twitter-roberta-base-sentiment is a roBERTa model trained on ~58M tweets and fine-tuned for senti-
ment analysis (https://huggingface.co/cardiffnlp/twitter-roberta-base-sentiment)

• SST-2 BERT: Fine-tuned on the Stanford Sentiment Treebank (SST-2) which consists of sentences from
movie reviews. The model is well-suited for general sentiment analysis tasks. (https://huggingface.co/
distilbert-base-uncased-finetuned-sst-2-english)

• Bert-base-multilingual-uncased-sentiment is a model fine-tuned for sentiment analysis on product re-
views in six languages: English, Dutch, German, French, Spanish and Italian (https://huggingface.co/
nlptown/bert-base-multilingual-uncased-sentiment)

• Distilbert-base-uncased-emotion is a model fine-tuned for detecting emotions in texts, including
sadness, joy, love, anger, fear and surprise (https://huggingface.co/bhadresh-savani/distilbert-base-
uncased-emotion)

Interesting Aspects

Sentiment and fake news | Vosoughi et al. (2018)

• Analyzed around 126,000 tweets
• Annotated with NRC lexicon
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Emotional analysis of false information | Ghanem et al. (2018)

Leveraging emotional signals for credibility detection | Giachanou et al. (2019)

• Three different approaches for calculating the emotional signals of the claims:

– emoLexi
– emoInt
– emoReact

Bias in sentiment analysis | Kiritchenko and Saif (2018)

• Are systems that detect sentiment biased?

• Hypothesis: a system should equally rate the intensity of the emotion expressed by two sentences that
differ in the gender/race
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Bias in sentiment analysis | Kiritchenko and Saif (2018)

Bias in sentiment analysis | Kiritchenko and Saif (2018)

21



Bias in sentiment analysis | Kiritchenko and Saif (2018)

Bias in sentiment analysis

What about biases in LLMs?

• DistilBERT base uncased finetuned SST-2:

– “This movie was filmed in France” -> 0.89
– “This movie was filmed in Afghanistan” -> 0.08

Bias in sentiment analysis

• “This movie was filmed in {country_name}”

From Aurélien Géron colab

Summary

Summary

• Sentiment analysis
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• Lexicon-based methods
• Learning-based methods
• Sentiment aware word embeddings
• Other aspects regarding sentiment analysis

Resources

• Crawl your own data from Twitter:

– https://developer.twitter.com/en/docs/twitter-api

• SemEval Datasets: 2012-now

– https://semeval.github.io/

• Stanford Twitter Sentiment (STS):

– http://help.sentiment140.com/ (Go et al. 2009)

• Sanders Corpus:

– https://github.com/zfz/twitter_corpus

• IMDB movie reviews (50K)

– https://ai.stanford.edu/~amaas/data/sentiment/

• Datasets from Bing Liu’s group:

– https://www.cs.uic.edu/~liub/FBS/sentiment-analysis.html

• Amazon review data

– https://nijianmo.github.io/amazon/index.html

• iSarcasm

– https://github.com/dmbavkar/iSarcasm

Lexicons and tools

• VADER (Hutto and Gilbert, 2014)

– https://github.com/cjhutto/vaderSentiment

• LIWC

– https://www.liwc.app/

• Bing Liu

– https://www.cs.uic.edu/~liub/FBS/sentiment-analysis.html

• Multi-Perspective Question Answering - MPQA (Wiebe et al., 2005)

– https://mpqa.cs.pitt.edu/lexicons/subj_lexicon/

• SentiWordNet (Esuli and Sebastiani, 2006)

– https://github.com/aesuli/SentiWordNet

• NRC Lexicons

– http://saifmohammad.com/WebPages/lexicons.html

• AFFINN (Nielsen, 2011)

– https://github.com/fnielsen/afinn
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Tutorials

• Sentiment analysis in huggingface
• Sentiment analysis with BERT
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