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Lecture plan
1. Feed-forward neural networks
2. Recurrent neural networks

2.1 SRN
2.2 LSTM
2.3 Bi-LSTM
2.4 GRU

What is Deep Learning (DL) ?
A machine learning subfield of learning representations of data.
Exceptional effective at learning patterns.
Deep learning algorithms attempt to learn (multiple levels of)
representation by using a hierarchy of multiple layers.

Feed-forward neural networks
▶ A typical multi-layer network consists of an input, hidden and

output layer, each fully connected to the next, with activation
feeding forward.

▶ The weights determine the function computed.

Feed-forward neural networks

h = σ(W1x + b1)

y = σ(W2h + b2)

Feed-forward neural networks

One forward pass

Training
https://medium.com/@ramrajchandradevan/the-evolution-of-
gradient-descend-optimization-algorithm-4106a6702d39
Optimize objective/cost function J(θ)
Generate error signal that measures difference between predictions
and target values

Use error signal to change the weights and get more accurate
predictions
Subtracting a fraction of the gradient moves you towards the
(local) minimum of the cost function

Updating weights
objective/cost function J(θ)
Update each element of θ:

θnew
j = θold

j − α
d

θold
j

J(θ)

Matrix notation for all parameters (α: learning rate):

θnew
j = θold

j − α∇θJ(θ)

Recursively apply chain rule though each node

Notes on training
▶ Not guaranteed to converge to zero training error, may

converge to local optima or oscillate indefinitely.
▶ However, in practice, does converge to low error for many

large networks on real data.
▶ Many epochs (thousands) may be required, hours or days of

training for large networks.
▶ To avoid local-minima problems, run several trials starting

with different random weights (random restarts).
▶ Take results of trial with lowest training set error.
▶ Build a committee of results from multiple trials (possibly

weighting votes by training set accuracy).

Hidden unit representations
▶ Trained hidden units can be seen as newly constructed

features that make the target concept linearly separable in the
transformed space.

▶ On many real domains, hidden units can be interpreted as
representing meaningful features such as vowel detectors or
edge detectors, etc..

▶ However, the hidden layer can also become a distributed
representation of the input in which each individual unit is not
easily interpretable as a meaningful feature.

Overfitting

Learned hypothesis may fit the training data very well, even
outliers (noise) but fail to generalize to new examples (test data)

How to avoid overfitting?

Overfitting prevention
▶ Running too many epochs can result in over-fitting.

▶ Keep a hold-out validation set and test accuracy on it after
every epoch. Stop training when additional epochs actually
increase validation error.

▶ To avoid losing training data for validation:
▶ Use internal K-fold CV on the training set to compute the

average number of epochs that maximizes generalization
accuracy.

▶ Train final network on complete training set for this many
epochs.

Regularization
Dropout
Randomly drop units (along with their connections) during training
Each unit retained with fixed probability p, independent of other
units
Hyper-parameter p to be chosen (tuned)

L2 = weight decay
Regularization term that penalizes big weights, added to the
objective Jreg(θ) = J(θ) + λ

∑
k θ2

k
Weight decay value determines how dominant regularization is
during gradient computation
Big weight decay coefficient &rarr big penalty for big weights
Early-stopping
Use validation error to decide when to stop training
Stop when monitored quantity has not improved after n
subsequent epochs
n is called patience

Determining the best number of hidden units
▶ Too few hidden units prevents the network from adequately

fitting the data.
▶ Too many hidden units can result in over-fitting.

▶ Use internal cross-validation to empirically determine an
optimal number of hidden units.

▶ Hyperparameter tuning

source: http://web.stanford.edu/class/cs224n/

https://medium.com/@ramrajchandradevan/the-evolution-of-gradient-descend-optimization-algorithm-4106a6702d39
https://medium.com/@ramrajchandradevan/the-evolution-of-gradient-descend-optimization-algorithm-4106a6702d39
http://web.stanford.edu/class/cs224n/


Recurrent Neural Networks
▶ Another architecture of NN
▶ RNN for LM

Recurrent Neural Network (RNN)
▶ Add feedback loops where some units’ current outputs

determine some future network inputs.
▶ RNNs can model dynamic finite-state machines, beyond the

static combinatorial circuits modeled by feed-forward
networks.

Simple Recurrent Network (SRN)
▶ Initially developed by Jeff Elman (“Finding structure in time,”

1990).
▶ Additional input to hidden layer is the state of the hidden

layer in the previous time step.

Unrolled RNN
▶ Behavior of RNN is perhaps best viewed by “unrolling” the

network over time.

Training RNNs
▶ RNNs can be trained using “backpropagation through time.”
▶ Can viewed as applying normal backprop to the unrolled

network.



LSTM
Vanishing gradient problem
Suppose we had the following scenario:
Day 1: Lift Weights
Day 2: Swimming
Day 3: At this point, our model must decide whether we should
take a rest day or yoga. Unfortunately, it only has access to the
previous day. In other words, it knows we swam yesterday but it
doesn’t know whether had taken a break the day before.
Therefore, it can end up predicting yoga.
▶ Backpropagated errors multiply at each layer, resulting in

exponential decay (if derivative is small) or growth (if
derivative is large).

▶ Makes it very difficult train deep networks, or simple recurrent
networks over many time steps.

▶ LSTMs were invented, to get around this problem.
https://towardsdatascience.com/

Long Short Term Memory
▶ LSTM networks, add additional gating units in each memory

cell.
▶ Forget gate
▶ Input gate
▶ Output gate

▶ Prevents vanishing/exploding gradient problem and allows
network to retain state information over longer periods of
time.

LSTM network architecture | https:
//colah.github.io/posts/2015-08-Understanding-LSTMs/
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Bi-directional LSTM (Bi-LSTM)
▶ Separate LSTMs process sequence forward and backward and

hidden layers at each time step are concatenated to form the
cell output.

Gated Recurrent Unit (GRU)
▶ Alternative RNN to LSTM that uses fewer gates (Cho, et al.,

2014)
▶ Combines forget and input gates into “update” gate.
▶ Eliminates cell state vector

zt = σ(Wz · [ht−1, xt ])

rt = σ(Wr · [ht−1, xt ])

h̃t = tanh(W · [rt ∗ ht−1, xt ])

ht = (1 − zt) ∗ ht−1 + zt ∗ (̃h)t

Attention
▶ For many applications, it helps to add “attention” to RNNs.
▶ Allows network to learn to attend to different parts of the

input at different time steps, shifting its attention to focus on
different aspects during its processing.

▶ Used in image captioning to focus on different parts of an
image when generating different parts of the output sentence.

▶ In MT, allows focusing attention on different parts of the
source sentence when generating different parts of the
translation.

https://towardsdatascience.com/
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://colah.github.io/posts/2015-08-Understanding-LSTMs/


Summary

Summary
▶ Deep learning can be applied for automatic feature engineering
▶ Recurrent neural networks are are ideal for sequential data

such as text
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