
Deep Learning &
LLMs 1
Applied Text Mining, from Foundations to
Advanced

Ayoub Bagheri
2025

This lecture
• Introduction to neural networks
• Feed-forward & deep neural networks
• Recurrent neural networks

Text mining process

3

Introduction

Why should we learn this?
State-of-the-art performance on various tasks
• Text prediction (your phone’s keyboard)
• Text mining
• Forecasting
• Spam filtering
• Compression (dimension reduction)
• Text generation
• Translation
• …

https://thispersondoesnotexist.com/

https://thispersondoesnotexist.com/

http://bethgelab.org

https://community.canvaslms.com/t5/Canvas-
Developers-Group/Canvas-LMS-Cheat-Detection-
System-In-Python/m-p/118134

“Hello world” of neural networks
• MNIST (Modified

National Institute
of Standards and
Technology)
• Handwritten digits
• 28 * 28 pixels
• 60 000 training

images and 10 000
testing images

“Hello world” of neural networks for
text: Sentiment classification with LSTM

So what is a neural network?

Neural networks
𝑦 = 𝑓 𝑋 + 	ϵ

• Neural networks are a way to specify 𝑓 𝑋
• You can display 𝑓 𝑋 	graphically

• Let’s graphically represent linear regression!
𝑓 𝑋! =	(

"#$

%
𝛽"𝑥"!

Linear regression as neural net
𝑓 𝑋! = 𝛼 +&

"#$

%
𝛽"𝑥"!Graphical representation

• Parameters are arrows
• Arrows ending in a node

are summed together
• Intercept is not drawn

Linear regression as neural net
𝑓 𝑋! = 𝜷 +&

"#$

%
𝒘"𝑥"!Neural network jargon

• Parameter = weight
• Intercept = bias

Single layer neural networks
𝑦 = 𝑓 𝑋 + 	ϵ

Specify a layer with K hidden units called 𝐴

𝑓 𝑋 = 𝛽& +	(
'#$

(
𝛽'𝐴'

Where

𝐴' = ℎ' 𝑋 = 𝑔 𝑤&' +	(
"#$

%
𝑤"'𝑥"

Single layer neural networks

Single layer neural networks
•What about the function 𝑔 ⋅ ?
• This is called the activation function
• A transformation of the linear combination of

predictors

ℎ' 𝑋 = 𝑔 𝑤&' +	(
"#$

%
𝑤"'𝑥"

Activation functions
Linear: 𝒈 𝒙 = 𝒙 Sigmoid: 𝒈 𝒙 = 𝟏

𝟏'𝒆!𝒙

ReLu: 𝒈 𝒙 = 𝒎𝒂𝒙(𝟎, 𝒙) • Rectified linear (ReLu) is
most popular nowadays
• Nonlinearity necessary!

Otherwise: collapse to
linear regression

Single layer neural networks

Feed-forward Neural Networks

Feed-forward neural networks
We can go deeper
• More hidden layers after one another
• Higher-order features composed of lower-order features

Universal function approximation theorem, version 2
Any “well-behaved” function can be represented by neural net
of sufficient depth with nonlinear activation function

(deep neural nets may be more tractable than wide)

Feed-forward neural networks

Feed-forward neural networks
Feed-forward network
architecture defined by:
• Number of layers
• Number of hidden units

in each layer
• Activation function for

each layer
• Activation function for

output layer

Keras!
import(keras)

model_dff =
 keras_model_sequential() %>%
 layer_flatten(input_shape = c(28, 28)) %>%
 layer_dense(units = 256, activation = "relu") %>%
 layer_dense(units = 128, activation = "relu") %>%
 layer_dense(10, activation = "softmax")

Keras!
summary(model_dff)

Layer (type) Output Shape Param #
==
flatten (Flatten) (None, 784) 0
__
dense_1 (Dense) (None, 256) 200960
__
dense_2 (Dense) (None, 128) 32896
__
dense_3 (Dense) (None, 10) 1290
==
Total params: 235,146
Trainable params: 235,146
Non-trainable params: 0
__

How to estimate parameters?

Estimating parameters
• We need some way to measure how well the network does
• Parameters that make the network perform well are good!

Loss function
• For continuous outcomes you can use squared error

(same as linear regression!)
𝐿 𝜃 = 𝑓 𝑋!; 𝜃 − 𝑦! "

• For binary outcomes you can use binary cross-entropy
(same as logistic regression!)

𝐿 𝜃 = − 𝑦! log 𝑓 𝑋!; 𝜃 + 1 − 𝑦! log 𝑓 𝑋!; 𝜃

Gradient descent
Iteration: step of size 𝜆 in the direction of the negative gradient

𝜃 345 = 𝜃 3 − 𝜆 ⋅ 𝑔 𝜃 3

• But in neural networks, how do we compute gradients?
• We have functions of functions!
• Software like tensorflow / Keras / torch does this for you!
• Backpropagation: smart repeated use of the chain rule to compute

derivatives

Break

Recurrent Neural Network
(RNN)

Recurrent Neural Network
• Another famous architecture of Deep Learning
• Preferred algorithm for sequential data
• time series, speech, text, financial data, audio, video,

weather and much more.
• text: sentiment analysis, sequence labeling, speech

tagging, machine translation, etc.

•Maintains internal memory, thus can remember its
previous inputs

32

Simple recurrent network

33

Simple recurrent network

34

Training RNNs
• RNNs can be trained using “backpropagation through time.”
• Can viewed as applying normal backprop to the unrolled

network.

35

The problem of Vanishing Gradient
• Consider a RNN model for a machine translation task from English to

Dutch.
• It has to read an English sentence, store as much information as

possible in its hidden activations, and output a Dutch sentence.
• The information about the first word in the sentence doesn’t get used

in the predictions until it starts generating Dutch words.
• There’s a long temporal gap from when it sees an input to when it uses

that to make a prediction.
• It can be hard to learn long-distance dependencies.
• In order to adjust the input-to-hidden weights based on the first input,

the error signal needs to travel backwards through this entire pathway.

36

Long Short-Term Memory
(LSTM)

Long Short-Term Memory
• Prevents vanishing/exploding gradient problem by:
• introducing a gating mechanism
• turning multiplication into addition

• Designed to make it easy to remember information over long
time periods until it’s needed.

• The activations of a network correspond to short-term
memory, while the weights correspond to long-term memory.

38

LSTM architecture

https://colah.github.io/posts/2015-08-Understanding-LSTMs/ 39

https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://colah.github.io/posts/2015-08-Understanding-LSTMs/

Extensions
• Bi-directional network: separate LSTMs process forward and

backward sequences, and hidden layers at each time step are
concatenated to form the cell output.
• Gated Recurrent Unit (GRU): alternative RNN to LSTM that uses

fewer gates, combines forget and input gates into “update”
gate, eliminates cell state vector.
• Attention: Allows network to learn to attend to different parts

of the input at different time steps, shifting its attention to
focus on different aspects during its processing.

40

State-of-the-Art
• Recurrent neural networks
• LSTM
• GRU
• Bi-directional network

• Transformers
• Contextual embeddings
• Large Language Models (LLMs) --> ChatGPT

41

Conclusion
• Neural networks are popular methods especially for

text mining
• Feed-forward & RNN & CNN (tomorrow)
• RNN works better for text data

42

Practical 6

Questions?

