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This lecture
• Introduction to neural networks
• Feed-forward & deep neural networks
• Recurrent neural networks



Text mining process
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Introduction



Why should we learn this?
State-of-the-art performance on various tasks
• Text prediction (your phone’s keyboard)
• Text mining 
• Forecasting
• Spam filtering
• Compression (dimension reduction)
• Text generation
• Translation
• …



https://thispersondoesnotexist.com/ 

https://thispersondoesnotexist.com/


http://bethgelab.org



https://community.canvaslms.com/t5/Canvas-
Developers-Group/Canvas-LMS-Cheat-Detection-
System-In-Python/m-p/118134



“Hello world” of neural networks
• MNIST (Modified 

National Institute 
of Standards and 
Technology)
• Handwritten digits
• 28 * 28 pixels
• 60 000 training 

images and 10 000 
testing images



“Hello world” of neural networks for 
text: Sentiment classification with LSTM



So what is a neural network?



Neural networks
𝑦 = 𝑓 𝑋 + 	ϵ

• Neural networks are a way to specify 𝑓 𝑋
• You can display 𝑓 𝑋 	graphically

• Let’s graphically represent linear regression!
𝑓 𝑋! =	(

"#$

%
𝛽"𝑥"!



Linear regression as neural net
𝑓 𝑋! = 𝛼 +&

"#$

%
𝛽"𝑥"!Graphical representation

• Parameters are arrows
• Arrows ending in a node 

are summed together
• Intercept is not drawn



Linear regression as neural net
𝑓 𝑋! = 𝜷 +&

"#$

%
𝒘"𝑥"!Neural network jargon

• Parameter = weight
• Intercept = bias



Single layer neural networks
𝑦 = 𝑓 𝑋 + 	ϵ

Specify a layer with K hidden units called 𝐴

𝑓 𝑋 = 𝛽& +	(
'#$

(
𝛽'𝐴'

Where 

𝐴' = ℎ' 𝑋 = 𝑔 𝑤&' +	(
"#$

%
𝑤"'𝑥"



Single layer neural networks



Single layer neural networks
•What about the function 𝑔 ⋅ ?
• This is called the activation function
• A transformation of the linear combination of 

predictors

ℎ' 𝑋 = 𝑔 𝑤&' +	(
"#$

%
𝑤"'𝑥"



Activation functions
Linear: 𝒈 𝒙 = 𝒙 Sigmoid: 𝒈 𝒙 = 𝟏

𝟏'𝒆!𝒙

ReLu: 𝒈 𝒙 = 𝒎𝒂𝒙(𝟎, 𝒙) • Rectified linear (ReLu) is 
most popular nowadays
• Nonlinearity necessary! 

Otherwise: collapse to 
linear regression



Single layer neural networks



Feed-forward Neural Networks



Feed-forward neural networks
We can go deeper
• More hidden layers after one another
• Higher-order features composed of lower-order features

Universal function approximation theorem, version 2
Any “well-behaved” function can be represented by neural net 
of sufficient depth with nonlinear activation function

(deep neural nets may be more tractable than wide)



Feed-forward neural networks



Feed-forward neural networks
Feed-forward network 
architecture defined by:
• Number of layers
• Number of hidden units 

in each layer
• Activation function for 

each layer
• Activation function for 

output layer



Keras!
import(keras)

model_dff = 
  keras_model_sequential() %>% 
  layer_flatten(input_shape = c(28, 28)) %>% 
  layer_dense(units = 256, activation = "relu") %>% 
  layer_dense(units = 128, activation = "relu") %>% 
  layer_dense(10, activation = "softmax")



Keras!
summary(model_dff)

Layer (type)                          Output Shape                       Param #      
======================================================================================
flatten (Flatten)                     (None, 784)                        0            
______________________________________________________________________________________
dense_1 (Dense)                       (None, 256)                        200960       
______________________________________________________________________________________
dense_2 (Dense)                       (None, 128)                        32896        
______________________________________________________________________________________
dense_3 (Dense)                       (None, 10)                         1290         
======================================================================================
Total params: 235,146
Trainable params: 235,146
Non-trainable params: 0
______________________________________________________________________________________



How to estimate parameters?



Estimating parameters
• We need some way to measure how well the network does
• Parameters that make the network perform well are good!



Loss function
• For continuous outcomes you can use squared error

(same as linear regression!)
𝐿 𝜃 = 𝑓 𝑋!; 𝜃 − 𝑦! " 

• For binary outcomes you can use binary cross-entropy
(same as logistic regression!)

𝐿 𝜃 = − 𝑦! log 𝑓 𝑋!; 𝜃 + 1 − 𝑦! log 𝑓 𝑋!; 𝜃



Gradient descent
Iteration: step of size 𝜆 in the direction of the negative gradient

𝜃 345 = 𝜃 3 − 𝜆 ⋅ 𝑔 𝜃 3

• But in neural networks, how do we compute gradients? 
• We have functions of functions!
• Software like tensorflow / Keras / torch does this for you!
• Backpropagation: smart repeated use of the chain rule to compute 

derivatives

 



Break



Recurrent Neural Network
(RNN)



Recurrent Neural Network
• Another famous architecture of Deep Learning
• Preferred algorithm for sequential data 
• time series, speech, text, financial data, audio, video, 

weather and much more.
• text: sentiment analysis, sequence labeling, speech 

tagging, machine translation, etc.

•Maintains internal memory, thus can remember its 
previous inputs
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Simple recurrent network
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Simple recurrent network
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Training RNNs
• RNNs can be trained using “backpropagation through time.”
• Can viewed as applying normal backprop to the unrolled 

network.
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The problem of Vanishing Gradient
• Consider a RNN model for a machine translation task from English to 

Dutch.
• It has to read an English sentence, store as much information as 

possible in its hidden activations, and output a Dutch sentence. 
• The information about the first word in the sentence doesn’t get used 

in the predictions until it starts generating Dutch words. 
• There’s a long temporal gap from when it sees an input to when it uses 

that to make a prediction. 
• It can be hard to learn long-distance dependencies. 
• In order to adjust the input-to-hidden weights based on the first input, 

the error signal needs to travel backwards through this entire pathway.
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Long Short-Term Memory 
(LSTM)



Long Short-Term Memory
• Prevents vanishing/exploding gradient problem by:
• introducing a gating mechanism
• turning multiplication into addition

• Designed to make it easy to remember information over long 
time periods until it’s needed.

• The activations of a network correspond to short-term 
memory, while the weights correspond to long-term memory.
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LSTM architecture

https://colah.github.io/posts/2015-08-Understanding-LSTMs/ 39

https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://colah.github.io/posts/2015-08-Understanding-LSTMs/


Extensions
• Bi-directional network: separate LSTMs process forward and 

backward sequences, and hidden layers at each time step are 
concatenated to form the cell output.
• Gated Recurrent Unit (GRU): alternative RNN to LSTM that uses 

fewer gates, combines forget and input gates into “update” 
gate, eliminates cell state vector.
• Attention: Allows network to learn to attend to different parts 

of the input at different time steps, shifting its attention to 
focus on different aspects during its processing.
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State-of-the-Art
• Recurrent neural networks
• LSTM
• GRU
• Bi-directional network

• Transformers
• Contextual embeddings
• Large Language Models (LLMs) --> ChatGPT
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Conclusion
• Neural networks are popular methods especially for 

text mining
• Feed-forward & RNN & CNN (tomorrow)
• RNN works better for text data
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Practical 6



Questions?


