
Text Representation and Classification

Ayoub Bagheri & Qixiang Fang

Lecture’s Plan

▶ How to represent a document?
▶ What are vector space and bag-of-words models?

▶ How to classify text data?
▶ How to evaluate a classifier?

Text Classification

Text classification

▶ Supervised learning: Learning a function that maps an input
to an output based on example input-output pairs.
▶ infer a function from labeled training data
▶ use the inferred function to label new instances

▶ Human experts annotate a set of text data
▶ Training set

Text classification?

▶ Which problem is not (or less likely to be) a text classification
task?
▶ Author’s gender detection from text
▶ Finding about the smoking conditions (yes/no) of patients

from clinical letters
▶ Grouping similar news articles
▶ Classifying reviews into positive and negative sentiments

Pipeline

Text Collection Text
Representation

Classification
(Model Training)

Prediction
(Test Data)

Text Representation

How to represent a document

▶ Represent by a string?
▶ No semantic meaning

▶ Represent by a list of sentences?
▶ Sentence is just like a short document (recursive definition)

Bag of Words (BOW)

▶ Words (terms) and weights as the basis for vector
representations of text
▶ Doc1: Text mining is to identify useful information.
▶ Doc2: Useful information is mined from text.
▶ Doc3: Apple is delicious.

BOW weights: Binary

▶ Binary
▶ with 1 indicating that a term occurred in the document, and 0

indicating that it did not

BOW weights: Raw Term frequency

▶ Idea: a term is more important if it occurs more frequently in
a document

▶ use the raw frequency count of term t in doc d

BOW weights: TF-IDF
▶ Idea: a term is more discriminative if it occurs a lot but only

in fewer documents.
▶ TF-IDF (term frequency–inverse document frequency) weight:

wd ,t = TFd ,t · IDFt

Let nd ,t denote the number of times term t appears in document
d . The relative frequency of t in d is:

TFd ,t = nd ,t∑
i nd ,i

Let N denote the number of documents annd Nt denote the
number of documents containing term t.

IDFt = log(N
Nt

)

Vector space model

▶ A vector space is a collection of vectors
▶ A vector is an ordered finite list of numbers.
▶ Represent documents by concept vectors

▶ Each concept defines one dimension
▶ A large number of concepts define a high-dimensional space
▶ Element of vector corresponds to concept weight
▶ The process of converting text into numbers is called

Vectorization
▶ Distance between the vectors in this concept space

▶ Relationship among documents

Vector space model

▶ Terms are generic features that can be extracted from text
▶ Typically, terms are single words, keywords, n-grams, or

phrases
▶ Documents are represented as vectors of terms
▶ Each dimension (concept) corresponds to a separate term

d = (w1, ..., wn)

An illustration of VS model

▶ All documents are projected into this concept space

Vector space model

▶ Bag of Words, a Vector Space Model where:
▶ Terms: words (more generally we may use n-grams, etc.)
▶ Weights: number of occurrences of the terms in the document

▶ Topics (later)
▶ Word Embeddings (later)

Classification Algorithms

How to classify this document?

Text Classification: definition

▶ Input:
▶ A training set of m manually-labeled documents

(d1, c1), · · · , (dm, cm)
▶ A fixed set of classes C = {c1, c2, . . . , cJ}

▶ Output:
▶ A learned classifier y : d → c

Hand-coded rules

▶ Rules based on combinations of words or other features
▶ Rules carefully refined by expert
▶ But building and maintaining these rules is expensive
▶ Data/Domain specifics
▶ Not recommended!

Supervised Machine Learning

▶ Nearest centroid
▶ K-nearest neighbors
▶ Naïve Bayes
▶ Decision tree
▶ Random forest
▶ Support vector machines

More:

▶ Logistic regression
▶ Neural networks

Rocchio Classifier (Nearest Centroid)

Each class is represented by its centroid, with test samples
classified to the class with the nearest centroid. Using a training
set of documents, the Rocchio algorithm builds a prototype vector,
centroid, for each class. This prototype is an average vector over
the training documents’ vectors that belong to a certain class.

µc = 1
|Dc |

∑
d∈Dc

d

Where Dc is the set of documents in the corpus that belongs to
class c and d is the vector representation of document d .

Rocchio Classifier (Nearest Centroid)
The predicted label of document d is the one with the smallest
(Euclidean) distance between the document and the centroid.

ĉ = arg min
c

||µc − d||

K-Nearest Neighbor

K-Nearest Neighbor

▶ Given a test document d , the KNN algorithm finds the k
nearest neighbors of d among all the documents in the
training set, and scores the category candidates based on the
class of the k neighbors.

▶ After sorting the score values, the algorithm assigns the
candidate to the class with the highest score.

▶ The basic nearest neighbors classification uses uniform
weights: that is, the value assigned to a query point is
computed from a simple majority vote of the nearest
neighbors.

▶ Can weight the neighbors such that nearer neighbors
contribute more to the fit.

Naïve Bayes

Bayes’ Rule

▶ Applied to documents and classes
▶ For a document d and a class c

P(c|d) = P(c)P(d |c)
P(d)

Multinomial Naïve Bayes Assumptions

CNB = argmax
c∈C

P(c) · P(w1, w2, . . . , wn|c)

▶ Bag of Words assumption: Assume position doesn’t matter
▶ Conditional Independence: Assume the feature probabilities

P(wi |c) are independent given the class c.

P(w1, . . . , wn|c) = P(w1|c) · P(w2|c) · P(w3|c) · . . . · P(wn|c)

▶ Hence:

CNB = argmax
c∈C

P(c) · P(w1|c) · P(w2|c) · P(w3|c) · . . . · P(wn|c)

CNB = argmax
c∈C

P(c)
∏

i∈positions
P(wi |c)

Parameter estimation

▶ First attempt: maximum likelihood estimates
▶ simply use the frequencies in the data

P̂(c) = count(C = c)
Ndoc

P̂(wi |c) = count(wi , c)∑
w∈V count(w , c)

Problem with Maximum Likelihood

What if we have seen no training documents with the word coffee
and classified in the topic positive (thumbs-up)?

P̂(′′coffee′′|positive) = count(′′coffee′′, positive)∑
w∈V count(w, positive)

Zero probabilities cannot be conditioned away, no matter the other
evidence!

CNB = argmax
c∈C

P(c)
∏

i∈positions
P(wi |c)

Laplace (add-1) smoothing for Naïve Bayes

P̂(wi |c) = count(wi , c) + 1∑
w∈V (count(w , c) + 1)

Decision Tree

▶ A decision tree is a hierarchical decomposition of the
(training) data space, where a condition on the feature value
is used to divide the data space hierarchically.

▶ Top-down, by choosing a variable at each step that best splits
the set of items.

▶ Different algorithms to measure the homogeneity of the target
variable within the subsets (e.g. Gini impurity, information
gain)

Random Forest

▶ Random forests are an ensemble learning method for
classification, regression and other tasks that operates by
constructing a multitude of decision trees at training time.

▶ Fit multiple trees to bootstrapped samples of the data AND
at each node select best predictor from only a random subset
of predictors. Combine all trees to yield a consensus prediction

Support Vector Machine

▶ The main principle of SVM is to determine separators in the
search space which can best separate the different classes.

▶ SVM tries to make a decision boundary in such a way that the
separation between the two classes is as wide as possible.

Support Vector Machine

▶ It is not necessary to use a linear function for the SVM
classifier.

▶ With the kernel trick, SVM can construct a nonlinear decision
surface in the original feature space by mapping the data
instances non-linearly to a new space where the classes can be
separated linearly with a hyperplane.

▶ SVM is quite robust to high dimensionality.

Evaluation

Data Splitting

▶ Training set
▶ Validation set (dev set)

▶ A dataset of examples used to tune the hyperparameters
(i.e. the architecture) of a classifier. It is sometimes also
called the development set or the “dev set”.

▶ Test set

Nested Cross Validation

adapted from
https://scikit-learn.org/stable/modules/cross_validation.html

https://scikit-learn.org/stable/modules/cross_validation.html

Confusion matrix

Accuracy

▶ What proportion of instances is correctly classified?
TP + TN / TP + FP + FN + TN

▶ Accuracy is a valid choice of evaluation for classification
problems which are well balanced and not skewed.

▶ Let us say that our target class is very sparse. Do we want
accuracy as a metric of our model performance? What if we
are predicting if an asteroid will hit the earth? Just say “No”
all the time. And you will be 99% accurate. The model can
be reasonably accurate, but not at all valuable.

Precision and recall
▶ Precision (also Positive Predictive Value): % of

selected/retrieved items that are correct/relevant
▶ Recall (also sensitivity): % of correct/relevant items that are

selected/retrieved.

▶ Precision is a valid choice of evaluation metric when we want
to be very sure of our prediction.

▶ Recall is a valid choice of evaluation metric when we want to
capture as many positives as possible.

A combined measure: F

A combined measure that assesses the precision/recall tradeoff is F
measure (weighted harmonic mean):

F = (β2 + 1)PR
β2P + R

where β is a positive real number and is chosen such that recall is
considered β times as important as precision.

Balanced F1 measure: β = 1, F = 2PR/(P + R)

The Real World

No training data?

▶ Manually written rules
▶ If (x or y) and not (w or z) then categorize as class1
▶ Need careful crafting
▶ Low accuracy
▶ Domain-specific
▶ Time-consuming

▶ Active learning
▶ Unsupervised methods

Very little data?

▶ Use Naïve Bayes, KNN, Rocchio
▶ Get more labeled data
▶ Find ways to label data
▶ Try semi-supervised methods
▶ Try transfer learning

A reasonable amount of data?

▶ Works with the more complex classifiers
▶ SVM
▶ Random forest

A huge amount of data?

▶ Can achieve high accuracy!
▶ At a cost:

▶ SVMs (train time) or KNN (test time) can be too slow

Accuracy as a function of data size
▶ With enough data

▶ Classifier may not matter

https://aclanthology.org/P01-1005.pdf

https://aclanthology.org/P01-1005.pdf

How to tweak performance

▶ Domain-specific features and weights: very important in real
performance

▶ Sometimes need to collapse terms:
▶ Part numbers, chemical formulas, . . .
▶ But stemming generally doesn’t help

▶ Upweighting: Counting a word as if it occurred twice:
▶ Title words
▶ First sentence of each paragraph (Murata, 1999)
▶ In sentences that contain title words

▶ Hyperparameter optimization

Summary

Summary

▶ Vector space model & BOW

▶ Text Classification
▶ Evaluation

Practical 3

	Text Classification
	Text Representation
	Classification Algorithms
	Evaluation
	The Real World
	Summary
	Practical 3

