Introduction to Large
Language Models

Albert Gatt & Ayoub Bagheri
Utrecht University

Goals of this short course

* Main goal: understanding the fundamentals of (large) language
models

—>The language modeling objective

—>Sequences and the encoder-decoder architecture
- Attention

-2 Transformer models

Language modelling

't’s about sequences

e “This morning | took the dog for a walk.”

© MIT 6.5191: Introduction to Deep Learning
IntroToDeeplearning.com

Sequence modelling

This morning | took the dog for a....... walk

This morning | took the dog to the......vet

Given: history/context ‘ ‘

predict what comes next

Approach 1: fixed window (n-grams)

* Model the sequence in terms of smaller sub-sequences of length n
(e.g.n=1, 2 or 3)

n

* Unigram (1-gram): P (&1, ..., Zp) & Hp(ﬂﬁz)
i=1

e Bigram: p(wn\ﬁl,u oy L — 1) (xn‘xn 1)

Would 3 b'gram model handle this?

P (T |T1y ey Tro1) = p(Tp|Tn_1)

This morning | took the dog for a....... walk

This morning | took the dog to the......vet

Given: history/context ‘ ‘

p(walk | this morning...) = p(walk | a)
p(vet | this morning...) = p(vet | the)

But surely, predicting walk/vet also depends on dog?

With a simple Markov model like this, we cannot model long-term
dependencies.

Long-distance dependencies

Word probabilities:

In Spain, | ate a lot of paella and learnt some Spanish.

Pronouns and their antecedents:
John told me he was leaving on the 24th.
Mary told me she was leaving on the 24th.

Bag of words?

* |dea: treat the whole sequence as a multiset (“bag”), where each
element is represented by a count.

* We can also weight such counts in various ways, e.g. TF/IDF

- morning I took . - .I

* But BoW doesn’t preserve order. These two are equivalent:
* In Spain, | ate a lot of paella and learnt some Spanish.
* | ate some paella and learnt a lot of Spanish in Spain.

Suppose we use a really big fixed-window?

* More or less, like using n-grams with larger values for n
e E.g. consider previous 5 words

This morning | took the dog to the......vet

Long-distance dependencies (again)

m) Distance is not fixed:
John, who is my mother’s brother, told me he was leaving on the 24th.
Mary, who is my father’s sister, told me she was leaving on the 24th.

Summary: The challenges of sequences

ldeally, we want to deal with:

* variable length

e order preservation

* long-distance dependencies

e parameter sharing across the sequence

Recurrent networks

Recurrent Neural Networks (RNNs)

 Rationale:

* Rather than fixing the amount of history our network can handle, we allow it
to accumulate a representation over time.

* This can work over arbitrary sequences.

* Hopefully, it will also encode similar things in similar ways (less
representational redundancy).

* In the accumulated representation, it should also capture dependencies
between elements at different (possibly distant) time-steps.

Recurrent Neural Network

Output y
this

|
|

Input x
<START>

e

Output y
morning

—
|

Input x
this

Outputy
walk

Recurrent Neural Network

Output y Output y Outputy
this morning walk

| |
T

| | |

Input x Input x Input x
<START> <START> this <START> this morning | took the dog for a

RNN maintains a hidden state across timesteps which
accumulates the sequence representation.

Unrolled RNN

yl y2 y3 yt—l
74 v v %
w W W
hO
U U U U
X1 X2 X3 Xi1

* Processes a sequence X;,..., X, vVia hidden units h,,...,h, to yield an output sequence.
* Key property: share parameter matrices U, W and V across time.

Yt

Recurrent neural network: parameters

Y1 Y2 Y3 Yia Vi
v v 74 v "4
w w w w
h,
U U U U U
X1 X2 X3 X1 Xy
 Recurrence formula Often, g = tanh

hy = f (ht—la-fl?t) — g (Wht—l + UCIS't)
Previous hidden state Input vector at

yt p— V ht Shared W current timestep.

Shared U

Recurrent Neural Networks: Process Sequences

one to one one to many many to one many to many many to many

CS231n: Convolutional Neural Networks

Depth

oL L
QOG-
DR OROREGRO

* We can stack multiple hidden layers in the RNN and connect them.

* Each layer has its own weight matrix for hidden states (W) and inputs (U) are:

[[11 Input from the
ht — g (W ht—]. _|_ previous layer (= x at

layer 1)

Bidirectionality

Gating (brief outline)

RNNs can handle arbitrary sequences, but they do forget!

* During training, long-distance dependencies are “lost” as the impact
of early elements is diminished over time.

Gated Recurrent Unit (GRU)
Long Short-term Memory (LSTM) network

* Two variations of RNNs use “gates” to allow the network to selectively
retain or “forget” information.

Training with cross-entropy loss

Loss is averaged over the

Reference this morning vet sequence:
R L
) = Leg

LOSS) Iog ythis _ Iog ymoming Iog yvet f ;
prediction 1 1 1 Lop = —logy,
Softmax ||II|. I|III. III“'

e
S T !

1=l

> —fp ts0 tes ees —l

1 1 1

Input x <START> this vet

Prediction with a trained RNN

Prediction y this morning

Y Y

Softmax . .

T T
I I

Input x <START> this

Encoder-Decoder Architecture

Causal (“auto-regressive”) generation

* Basic idea: condition next word prediction on the preceding word, plus the
hidden state.

Prediction y this morning vet

T T T

Softmax l. ln. .

T T !
T T T

Inputx <START> this vet

Causal (“auto-regressive”) generation

e At each time step t, sample from the vocabulary V, and choose the
most likely next element, based on:

e Current hidden state (which accumulates the representation up to t-1)
* Previous word generated at t-1

* Notice, however, that this generates random sequences.
 What is the text being generated actually about?

* Suppose we want to generate from some input?

* |dea: condition word choice based on the input, as well as previously
generated words.

Encoder-Decoder architecture

[Output text]

| > DECODER

(= alanguage model)

context

Input text or data J

DECODER

e Conditioned on hidden
state of the encoder.

* Produce output by
sampling from a
probability distribution.

* At each time-step, we
predict the next token.

* Transform input to a
vector representation (the
context).

* Representation is available
in the network’s hidden
layer.

Sutskever, 1., Vinyals, O., & Le, Q. V. (2014). Sequence to sequence learning with neural networks. Advances in Neural Information Processing Systems 27 (NIPS’14), 3104-3112.
http://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural

Cho, K., van Merriénboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., & Bengio, Y. (2014). Learning Phrase Representations using RNN Encoder—Decoder for Statistical Machine
Translation. Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), 1724—1734. https://doi.org/10.3115/v1/D14-1179

http://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural
https://doi.org/10.3115/v1/D14-1179

Encoder-Decoder architecture

(b) English text
Trane, which was founded on January 11 1913 in La Crosse, Wisconsin, is based in Ireland. It has 25,000 employees.
(c) Russian text

Komnarwa "Tpare', ocHosaukas 1 aweapa 1913 roga s Jla-Kpocee 8 wrate BuckoHcuH, HaxoguTes 8 Mpnawguy. B
KOMMaHuH padoTakoT 29 ThicaY YEMoBex.

ENCODER | > DECODER

Prrrrt

<entry category="Company” eid="Id21" shape="(X (X) (X) (X) (X])" shape_type="sibling" size="4">
<modifiedtripleset»
<ntriple=Trane | foundingDate | 1913-81-81</ntriple:
<ntriplesTrane | location | Irelande/mtriples
<ntriplesTrane | foundationPlace | La_Crosse, Wisconsine/miriples
<ntriplesTrane | numberOfEmployees | 29866</mtriple>
</modifiedtriplesets
¢/entry>

(= language model)

Example from the WebNLG challenge
https://webnlg-challenge.loria.fr/challenge_2020/

Encoder-Decoder architecture

A large bus sitting next to a very tall
building.

ENCODER

| > DECODER

(= language model)

context

Image and caption taken from the COCO Challenge.
https://cocodataset.org/#captions-2015

Where do we factor in the context?

Various ways to do this. Here are two:

Initialise
 |nitialise the decoder with the encoder’s last hidden state

* During decoding, decoder predicts the next element with the previous
hidden state and the predictions generated so far.

Use context at each step
* |Inject the context into each time-step of the decoder

e At each timestep, decoder predicts based on its previous hidden state,
predictions generated so far, and the context.

The encoder-decoder model at inference
time (NB: context injected at each step)

! 1
/ ™ Ina \
W he, = he,
h h —(j —{ hd, hd, — h
Y yy
“ k /] '.‘ J
N e / !
Tt / /
t\ _________ <START> Y 7 Yn
\\\\

L

~ /’

~ P 4
\\ S f’ ’

~ ~~- - 7
~ - ”
\\ P 4
~

P d
-
‘N ”
-~
-~y -
-y -
~-~— ———
-

Where does attention come into the picture?

[Output text]

| > DECODER

(= language model)

context

[Input text or data J

The original E-D creates a bottleneck: All the input is compressed into a dense
representation, which is used throughout decoding.

Attention mechanisms allow the decoder to learn to differentiate between parts of the input

context. So at each time-step, we train it to pay more attention to relevant portions of the
iNput.

Transformers are based on a generalization of the attention mechanism.

Attention in Encoder-Decoder models

Y1

Decoder

ONON

What is the relevant context at hd,?
° 0 Take h91
Compare it to each of: he, to he,
Weight context vector accordingly
X1 X3 Xn

Encoder

Attention in Encoder-Decoder models

* Suppose input is of length n. Then the Encoder has n states,
one for each time-step (word etc): h®,...he

* Let ¢, be the decoder context at timestep i. We want this to
reflect how relevant each encoder state is to the decoder
state hd. ..

We capture this by comparing h., to each encoder state he,.

Attention in Encoder-Decoder models

1. Capture their similarity: compare the decoder state to each encoder state:
. d 1.ey __ 1.d e
score(hy, h5) = hy - h;

2. Normalise scores using softmax (turn them into a distribution):

a;j = softmax(score(h, h),Vj € e)

3. Use that distribution to compute a weighted average over all the hidden

encoder states:
e
Ci = E ﬂf,‘jhj
J

What does this do?

* Hopefully, during training, we achieve a way to identify, at each time-
step in the decoder, which part of the source encoding is most
relevant.

Attention as “alignment”

&)

L = %.E %‘ C'E E
== % >80 8 = @ m- m
. E3sCEZ2SEP . EED .V

[F]

Cela

va
changer
mon
avenir
avec
ma
famille

i

homme

<end=

Bahdanau, D., Cho, K., & Bengio, Y. (2015). Neural Machine Translation By Jointly
Learning To Align and Translate. Proceedings of the International Conference on
Learning Representations (ICLR’15), 1-15.
https://doi.org/10.1146/annurev.neuro.26.041002.131047

A stop sign is on a road with a
mountain in the background,

A woman holding a clock in her hand,

Xu, K., Ba, J. L., Kiros, R., Cho, K., Courville, A., Salakhutdinov, R., Zemel, R. S., & Bengio, Y.
(2015). Show, Attend and Tell: Neural Image Caption Generation with Visual Attention.
Proceedings of the International Conference on Learning Representations (ICLR’15).
http://arxiv.org/abs/1502.03044

38

https://doi.org/10.1146/annurev.neuro.26.041002.131047

Summary for today

* Language modelling objective
* Basically, word prediction given a preceding context.

* Recurrent networks
* Architecture to handle sequences of arbitrary length.

* Endoder-Decoder

* Architecture (originally with RNNs) to drive a language model to generate,
conditioned on input context.

e Attention

» Key step to condition the LM selectively on different parts of the input, at each
timestep.

What’s next?

* The current generation of “large language models” is based on
Transformer architectures.

* These generalise the notion of attention, while removing recurrence
completely.

* Next time:
e Generalisation of attention
* Transformers and self-attention
* Concrete examples of transformer-based LMs.

	Slide 1: Introduction to Large Language Models
	Slide 2: Goals of this short course
	Slide 3: Language modelling
	Slide 4: It’s about sequences
	Slide 5: Sequence modelling
	Slide 6: Approach 1: fixed window (n-grams)
	Slide 7: Would a bigram model handle this?
	Slide 8: Long-distance dependencies
	Slide 9: Bag of words?
	Slide 10: Suppose we use a really big fixed-window?
	Slide 11: Long-distance dependencies (again)
	Slide 12: Summary: The challenges of sequences
	Slide 13: Recurrent networks
	Slide 14: Recurrent Neural Networks (RNNs)
	Slide 15: Recurrent Neural Network
	Slide 16: Recurrent Neural Network
	Slide 17: Unrolled RNN
	Slide 18: Recurrent neural network: parameters
	Slide 19: Recurrent Neural Networks: Process Sequences
	Slide 20: Depth
	Slide 21: Bidirectionality
	Slide 22: Gating (brief outline)
	Slide 23: Training with cross-entropy loss
	Slide 24: Prediction with a trained RNN
	Slide 25: Encoder-Decoder Architecture
	Slide 26: Causal (“auto-regressive”) generation
	Slide 27: Causal (“auto-regressive”) generation
	Slide 28: Encoder-Decoder architecture
	Slide 29: Encoder-Decoder architecture
	Slide 30: Encoder-Decoder architecture
	Slide 31: Where do we factor in the context?
	Slide 32: The encoder-decoder model at inference time (NB: context injected at each step)
	Slide 33: Where does attention come into the picture?
	Slide 34
	Slide 35: Attention in Encoder-Decoder models
	Slide 36: Attention in Encoder-Decoder models
	Slide 37: What does this do?
	Slide 38: Attention as “alignment”
	Slide 39: Summary for today
	Slide 40: What’s next?

