# Introduction to Large Language Models

Albert Gatt & Ayoub Bagheri Utrecht University

### Goals of this short course

- Main goal: understanding the fundamentals of (large) language models
- $\rightarrow$ The language modeling objective
- $\rightarrow$ Sequences and the encoder-decoder architecture
- $\rightarrow$ Attention
- $\rightarrow$ Transformer models

## Language modelling

#### It's about sequences

- "This morning I took the dog for a walk."
- Multimenter and the second and the sec



sentence

#### medical signals

#### speech waveform

© MIT 6.S191: Introduction to Deep Learning IntroToDeepLearning.com



#### This morning I took the dog for a ..... walk



#### Approach 1: fixed window (n-grams)

 Model the sequence in terms of smaller sub-sequences of length n (e.g. n=1, 2 or 3)

• Unigram (1-gram): 
$$p(x_1, ..., x_n) \approx \prod_{i=1}^n p(x_i)$$

• Bigram: 
$$p(x_n|x_1, ..., x_{n-1}) \approx p(x_n|x_{n-1})$$

## Would a bigram model handle this? $p(x_n|x_1,...,x_{n-1}) \approx p(x_n|x_{n-1})$

This morning I took the dog for a..... walk



But surely, predicting *walk/vet* also depends on *dog*? With a simple Markov model like this, we cannot model long-term dependencies.

#### Long-distance dependencies

#### Word probabilities:

In Spain, I ate a lot of paella and learnt some Spanish.

#### **Pronouns and their antecedents:**

John told me he was leaving on the 24th.

Mary told me she was leaving on the 24th.

### Bag of words?

- Idea: treat the whole sequence as a multiset ("bag"), where each element is represented by a count.
  - We can also weight such counts in various ways, e.g. TF/IDF

This morning <mark>I</mark> took the <mark>dog</mark> for a

- But BoW doesn't preserve order. These two are equivalent:
  - In Spain, I ate a lot of paella and learnt some Spanish.
  - I ate some paella and learnt a lot of Spanish in Spain.

### Suppose we use a really big fixed-window?

- More or less, like using n-grams with larger values for n
  - E.g. consider previous 5 words

This morning I took the dog to the .....vet

### Long-distance dependencies (again)

Word probabilities:

In Spain, I ate a lot of paella and learnt some Spanish.

Pronouns: John told me he was leaving on the 24th. Mary told me she was leaving on the 24th.

#### **Distance is not fixed:**

John, who is my mother's brother, told me <mark>he</mark> was leaving on the 24th. Mary, who is my father's sister, told me <mark>she</mark> was leaving on the 24th.

### Summary: The challenges of sequences

Ideally, we want to deal with:

- variable length
- order preservation
- long-distance dependencies
- parameter sharing across the sequence

## Recurrent networks

### Recurrent Neural Networks (RNNs)

- Rationale:
  - Rather than fixing the amount of history our network can handle, we allow it to **accumulate a representation over time**.
  - This can work over arbitrary sequences.
  - Hopefully, it will also encode similar things in similar ways (less representational redundancy).
  - In the accumulated representation, it should also capture dependencies between elements at different (possibly distant) time-steps.

#### Recurrent Neural Network



#### Recurrent Neural Network



RNN maintains a hidden state across timesteps which accumulates the sequence representation.

### Unrolled RNN



- Processes a sequence  $x_1, ..., x_t$  via hidden units  $h_1, ..., h_t$  to yield an output sequence.
  - Key property: share parameter matrices U, W and V across time.

#### Recurrent neural network: parameters



Recurrence formula

Often, g = tanh

$$\begin{aligned} h_t &= f\left(h_{t-1}, x_t\right) = g\left(Wh_{t-1} + Ux_t\right) \\ y_t &= Vh_t \end{aligned} \text{Previous hidden state Input Shared W}$$

Input vector at current timestep. Shared U

#### Recurrent Neural Networks: Process Sequences



### Depth



RNN with two layers.

- We can stack multiple hidden layers in the RNN and connect them.
- Each layer has its own weight matrix for hidden states (W) and inputs (U) are:

$$h_t^l = g\left(W^l h_{t-1}^l + U^l h_t^{l-1}\right) \lim_{\text{previous layer (= x at layer 1)}} \|h_t^{l-1}\|_{\text{previous layer 1}} \|h_t^{l-1}\|_{\text{previous layer 1}} \|h_t^{l-1}\|_{\text{previous layer 1)}} \|h_t^{l-1}\|_{\text{previous layer 1}} \|h_t^{l-1}\|_{\text{previous layer 1}}$$

#### Bidirectionality



 $\begin{array}{rcl} h_t &=& g\left(Wh_{t-1} + U_t^x\right) \\ \overline{h}_t &=& g\left(\overline{Wh}_{t+1} + U_t^x\right) \\ y_t &=& V\left[h_t; \overline{h}_t\right]^T \end{array}$ 

### Gating (brief outline)

RNNs can handle arbitrary sequences, but they do forget!

• During training, long-distance dependencies are "lost" as the impact of early elements is diminished over time.

Gated Recurrent Unit (GRU)

Long Short-term Memory (LSTM) network

• Two variations of RNNs use "gates" to allow the network to selectively retain or "forget" information.

### Training with cross-entropy loss



#### Prediction with a trained RNN



## Encoder-Decoder Architecture

### Causal ("auto-regressive") generation

• Basic idea: condition next word prediction on the preceding word, plus the hidden state.



### Causal ("auto-regressive") generation

- At each time step *t*, sample from the vocabulary V, and choose the most likely next element, based on:
  - Current hidden state (which accumulates the representation up to *t-1*)
  - Previous word generated at *t-1*
- Notice, however, that this generates random sequences.
  - What is the text being generated actually about?
- Suppose we want to generate from some input?
  - Idea: condition word choice based on the input, as well as previously generated words.

#### **Encoder-Decoder architecture**



Sutskever, I., Vinyals, O., & Le, Q. V. (2014). Sequence to sequence learning with neural networks. *Advances in Neural Information Processing Systems 27 (NIPS'14)*, 3104–3112. <u>http://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural</u>

Cho, K., van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., & Bengio, Y. (2014). Learning Phrase Representations using RNN Encoder–Decoder for Statistical Machine Translation. *Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP)*, 1724–1734. <u>https://doi.org/10.3115/v1/D14-1179</u>

#### **Encoder-Decoder architecture**



#### **Encoder-Decoder architecture**



Image and caption taken from the COCO Challenge. https://cocodataset.org/#captions-2015

### Where do we factor in the context?

Various ways to do this. Here are two:

#### Initialise

- Initialise the decoder with the encoder's last hidden state
- During decoding, decoder predicts the next element with the previous hidden state and the predictions generated so far.

#### Use context at each step

- Inject the context into each time-step of the decoder
- At each timestep, decoder predicts based on its previous hidden state, predictions generated so far, and the context.

The encoder-decoder model at inference time (NB: context injected at each step)



#### Where does attention come into the picture?



The original E-D creates a **bottleneck**: All the input is compressed into a dense representation, which is used throughout decoding.

Attention mechanisms allow the decoder to learn to differentiate between parts of the input context. So at each time-step, we train it to pay more attention to relevant portions of the input.

Transformers are based on a generalization of the attention mechanism.

#### Attention in Encoder-Decoder models



#### Encoder

#### Attention in Encoder-Decoder models

- Suppose input is of length n. Then the Encoder has n states, one for each time-step (word etc): h<sup>e</sup><sub>1</sub>...h<sup>e</sup><sub>n</sub>
- Let c<sub>i</sub> be the decoder context at timestep i. We want this to reflect how relevant each encoder state is to the decoder state h<sup>d</sup><sub>i-1</sub>.
  - We capture this by comparing  $h_{i-1}^d$  to each encoder state  $h_i^e$ .

#### Attention in Encoder-Decoder models

1. Capture their similarity: compare the decoder state to each encoder state:

$$\operatorname{score}(h_i^d, h_j^e) = h_i^d \cdot h_j^e$$

- 2. Normalise scores using softmax (turn them into a distribution):  $\alpha_{ij} = \operatorname{softmax}(\operatorname{score}(h_i^d, h_j^e), \forall j \in e)$
- 3. Use that distribution to compute a weighted average over all the hidden encoder states:

$$c_i = \sum_j \alpha_{ij} h_j^e$$

### What does this do?

 Hopefully, during training, we achieve a way to identify, at each timestep in the decoder, which part of the source encoding is most relevant.



#### Attention as "alignment"





A stop sign is on a road with a mountain in the background,



A woman holding a clock in her hand.

Bahdanau, D., Cho, K., & Bengio, Y. (2015). Neural Machine Translation By Jointly Learning To Align and Translate. *Proceedings of the International Conference on Learning Representations (ICLR'15)*, 1–15. https://doi.org/10.1146/annurev.neuro.26.041002.131047  Xu, K., Ba, J. L., Kiros, R., Cho, K., Courville, A., Salakhutdinov, R., Zemel, R. S., & Bengio, Y. (2015). Show, Attend and Tell: Neural Image Caption Generation with Visual Attention. *Proceedings of the International Conference on Learning Representations (ICLR'15)*. http://arxiv.org/abs/1502.03044

### Summary for today

- Language modelling objective
  - Basically, word prediction given a preceding context.
- Recurrent networks
  - Architecture to handle sequences of arbitrary length.
- Endoder-Decoder
  - Architecture (originally with RNNs) to drive a language model to generate, conditioned on input context.
- Attention
  - Key step to condition the LM selectively on different parts of the input, at each timestep.

### What's next?

- The current generation of "large language models" is based on Transformer architectures.
- These generalise the notion of attention, while removing recurrence completely.
- Next time:
  - Generalisation of attention
  - Transformers and self-attention
  - Concrete examples of transformer-based LMs.