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Goals of this short course

• Main goal: understanding the fundamentals of (large) language
models

→The language modeling objective

→Sequences and the encoder-decoder architecture

→Attention

→Transformer models



Language modelling



It’s about sequences
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Sequence modelling

This morning I took the dog for a……. walk

This morning I took the dog to the……vet

Given: history/context

predict what comes next



Approach 1: fixed window (n-grams)

• Model the sequence in terms of smaller sub-sequences of length n
(e.g. n=1, 2 or 3)

• Unigram (1-gram):

• Bigram:



Would a bigram model handle this?

This morning I took the dog for a……. walk

This morning I took the dog to the……vet

But surely, predicting walk/vet also depends on dog?

With a simple Markov model like this, we cannot model long-term 
dependencies.

Given: history/context
p(walk | this morning…) = p(walk | a)
p(vet | this morning…) = p(vet | the)



Long-distance dependencies

Word probabilities:

In Spain, I ate a lot of paella and learnt some Spanish.

Pronouns and their antecedents:

John told me he was leaving on the 24th.

Mary told me she was leaving on the 24th.



Bag of words?

• Idea: treat the whole sequence as a multiset (“bag”), where each 
element is represented by a count. 
• We can also weight such counts in various ways, e.g. TF/IDF

This morning I took the dog for a

• But BoW doesn’t preserve order. These two are equivalent:
• In Spain, I ate a lot of paella and learnt some Spanish.

• I ate some paella and learnt a lot of Spanish in Spain.



Suppose we use a really big fixed-window?

• More or less, like using n-grams with larger values for n
• E.g. consider previous 5 words

This morning I took the dog to the……vet



Long-distance dependencies (again)

Word probabilities:
In Spain, I ate a lot of paella and learnt some Spanish.

Pronouns:
John told me he was leaving on the 24th.
Mary told me she was leaving on the 24th.

Distance is not fixed:
John, who is my mother’s brother, told me he was leaving on the 24th.
Mary, who is my father’s sister, told me she was leaving on the 24th.



Summary: The challenges of sequences

Ideally, we want to deal with:

• variable length

• order preservation

• long-distance dependencies

• parameter sharing across the sequence



Recurrent networks



Recurrent Neural Networks (RNNs)
• Rationale:

• Rather than fixing the amount of history our network can handle, we allow it 
to accumulate a representation over time.

• This can work over arbitrary sequences.

• Hopefully, it will also encode similar things in similar ways (less 
representational redundancy).

• In the accumulated representation, it should also capture dependencies 
between elements at different (possibly distant) time-steps.



Recurrent Neural Network
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Recurrent Neural Network

RNN

Input x
<START>
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RNN maintains a hidden state across timesteps which 
accumulates the sequence representation.

RNN

Input x
<START> this

Output y
morning

RNN

Input x
<START> this morning I took the dog for a

Output y
walk

… … …



Unrolled RNN
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• Processes a sequence x1,…, xt via hidden units h1,…,ht to yield an output sequence.
• Key property: share parameter matrices U, W and V across time.



Recurrent neural network: parameters

• Recurrence formula
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Recurrent Neural Networks: Process Sequences

CS231n: Convolutional Neural Networks



Depth

• We can stack multiple hidden layers in the RNN and connect them.

• Each layer has its own weight matrix for hidden states (W) and inputs (U) are: 
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layer 1)



Bidirectionality
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Gating (brief outline)

RNNs can handle arbitrary sequences, but they do forget!

• During training, long-distance dependencies are “lost” as the impact 
of early elements is diminished over time.

Gated Recurrent Unit (GRU) 

Long Short-term Memory (LSTM) network

• Two variations of RNNs use “gates” to allow the network to selectively 
retain or “forget” information.



Training with cross-entropy loss
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Prediction with a trained RNN
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Encoder-Decoder Architecture



Causal (“auto-regressive”) generation

• Basic idea: condition next word prediction on the preceding word, plus the 
hidden state.
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Causal (“auto-regressive”) generation

• At each time step t, sample from the vocabulary V, and choose the 
most likely next element, based on:
• Current hidden state (which accumulates the representation up to t-1)
• Previous word generated at t-1

• Notice, however, that this generates random sequences.
• What is the text being generated actually about?

• Suppose we want to generate from some input?
• Idea: condition word choice based on the input, as well as previously 

generated words.



Encoder-Decoder architecture

ENCODER
• Transform input to a 

vector representation (the 
context).

• Representation is available 
in the network’s hidden 
layer.

DECODER
• Conditioned on hidden 

state of the encoder.
• Produce output by 

sampling from a 
probability distribution.

• At each time-step, we 
predict the next token.

Sutskever, I., Vinyals, O., & Le, Q. V. (2014). Sequence to sequence learning with neural networks. Advances in Neural Information Processing Systems 27 (NIPS’14), 3104–3112. 
http://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural

Cho, K., van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., & Bengio, Y. (2014). Learning Phrase Representations using RNN Encoder–Decoder for Statistical Machine 
Translation. Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), 1724–1734. https://doi.org/10.3115/v1/D14-1179
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Encoder-Decoder architecture

Example from the WebNLG challenge
https://webnlg-challenge.loria.fr/challenge_2020/

ENCODER
DECODER

(= language model)context



Encoder-Decoder architecture

ENCODER

DECODER
( = language model)context

Image and caption taken from the COCO Challenge.
https://cocodataset.org/#captions-2015



Where do we factor in the context?

Various ways to do this. Here are two:

Initialise
• Initialise the decoder with the encoder’s last hidden state
• During decoding, decoder predicts the next element with the previous 

hidden state and the predictions generated so far.

Use context at each step
• Inject the context into each time-step of the decoder
• At each timestep, decoder predicts based on its previous hidden state, 

predictions generated so far, and the context.



The encoder-decoder model at inference 
time (NB: context injected at each step)
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Where does attention come into the picture?

The original E-D creates a bottleneck: All the input is compressed into a dense 
representation, which is used throughout decoding.

Attention mechanisms allow the decoder to learn to differentiate between parts of the input 
context. So at each time-step, we train it to pay more attention to relevant portions of the 
input.

Transformers are based on a generalization of the attention mechanism.
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Attention in Encoder-Decoder models

• Suppose input is of length n. Then the Encoder has n states, 
one for each time-step (word etc): he

1...he
n

• Let ci be the decoder context at timestep i. We want this to 
reflect how relevant each encoder state is to the decoder 
state hd

i-1.
• We capture this by comparing hd

i-1 to each encoder state he
j.



Attention in Encoder-Decoder models

1. Capture their similarity: compare the decoder state to each encoder state:

2. Normalise scores using softmax (turn them into a distribution):

3. Use that distribution to compute a weighted average over all the hidden 
encoder states:



What does this do?

• Hopefully, during training, we achieve a way to identify, at each time-
step in the decoder, which part of the source encoding is most 
relevant.
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Attention as “alignment”

38

Xu, K., Ba, J. L., Kiros, R., Cho, K., Courville, A., Salakhutdinov, R., Zemel, R. S., & Bengio, Y. 
(2015). Show, Attend and Tell: Neural Image Caption Generation with Visual Attention. 
Proceedings of the International Conference on Learning Representations (ICLR’15). 
http://arxiv.org/abs/1502.03044

Bahdanau, D., Cho, K., & Bengio, Y. (2015). Neural Machine Translation By Jointly 
Learning To Align and Translate. Proceedings of the International Conference on 
Learning Representations (ICLR’15), 1–15. 
https://doi.org/10.1146/annurev.neuro.26.041002.131047
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Summary for today

• Language modelling objective
• Basically, word prediction given a preceding context.

• Recurrent networks
• Architecture to handle sequences of arbitrary length.

• Endoder-Decoder
• Architecture (originally with RNNs) to drive a language model to generate, 

conditioned on input context.

• Attention
• Key step to condition the LM selectively on different parts of the input, at each 

timestep.



What’s next?

• The current generation of “large language models” is based on 
Transformer architectures.

• These generalise the notion of attention, while removing recurrence 
completely.

• Next time:
• Generalisation of attention

• Transformers and self-attention

• Concrete examples of transformer-based LMs.
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