
Introduction to Large
Language Models

Albert Gatt & Ayoub Bagheri

Utrecht University

Goals of this short course

• Main goal: understanding the fundamentals of (large) language
models

→The language modeling objective

→Sequences and the encoder-decoder architecture

→Attention

→Transformer models

Language modelling

It’s about sequences

© MIT 6.S191: Introduction to Deep Learning
IntroToDeepLearning.com

Sequence modelling

This morning I took the dog for a……. walk

This morning I took the dog to the……vet

Given: history/context

predict what comes next

Approach 1: fixed window (n-grams)

• Model the sequence in terms of smaller sub-sequences of length n
(e.g. n=1, 2 or 3)

• Unigram (1-gram):

• Bigram:

Would a bigram model handle this?

This morning I took the dog for a……. walk

This morning I took the dog to the……vet

But surely, predicting walk/vet also depends on dog?

With a simple Markov model like this, we cannot model long-term
dependencies.

Given: history/context
p(walk | this morning…) = p(walk | a)
p(vet | this morning…) = p(vet | the)

Long-distance dependencies

Word probabilities:

In Spain, I ate a lot of paella and learnt some Spanish.

Pronouns and their antecedents:

John told me he was leaving on the 24th.

Mary told me she was leaving on the 24th.

Bag of words?

• Idea: treat the whole sequence as a multiset (“bag”), where each
element is represented by a count.
• We can also weight such counts in various ways, e.g. TF/IDF

This morning I took the dog for a

• But BoW doesn’t preserve order. These two are equivalent:
• In Spain, I ate a lot of paella and learnt some Spanish.

• I ate some paella and learnt a lot of Spanish in Spain.

Suppose we use a really big fixed-window?

• More or less, like using n-grams with larger values for n
• E.g. consider previous 5 words

This morning I took the dog to the……vet

Long-distance dependencies (again)

Word probabilities:
In Spain, I ate a lot of paella and learnt some Spanish.

Pronouns:
John told me he was leaving on the 24th.
Mary told me she was leaving on the 24th.

Distance is not fixed:
John, who is my mother’s brother, told me he was leaving on the 24th.
Mary, who is my father’s sister, told me she was leaving on the 24th.

Summary: The challenges of sequences

Ideally, we want to deal with:

• variable length

• order preservation

• long-distance dependencies

• parameter sharing across the sequence

Recurrent networks

Recurrent Neural Networks (RNNs)
• Rationale:

• Rather than fixing the amount of history our network can handle, we allow it
to accumulate a representation over time.

• This can work over arbitrary sequences.

• Hopefully, it will also encode similar things in similar ways (less
representational redundancy).

• In the accumulated representation, it should also capture dependencies
between elements at different (possibly distant) time-steps.

Recurrent Neural Network

RNN

Input x
<START>

Output y
this

RNN

Input x
this

Output y
morning

RNN

Input x
a

Output y
walk

… … …

Recurrent Neural Network

RNN

Input x
<START>

Output y
this

RNN maintains a hidden state across timesteps which
accumulates the sequence representation.

RNN

Input x
<START> this

Output y
morning

RNN

Input x
<START> this morning I took the dog for a

Output y
walk

… … …

Unrolled RNN

h1

W

V

U

h2

W

V

U

h3

W

V

U

h0
… ht-1

W

V

U

ht

V

U

x1 x2 x3 xt-1 xt

y1
y2 y3 yt-1

yt

• Processes a sequence x1,…, xt via hidden units h1,…,ht to yield an output sequence.
• Key property: share parameter matrices U, W and V across time.

Recurrent neural network: parameters

• Recurrence formula

h1

W

V

U

h2

W

V

U

h3

W

V

U

h0
… ht-1

W

V

U

ht

V

U

x1 x2 x3 xt-1 xt

y1
y2 y3 yt-1

yt

Previous hidden state
Shared W

Input vector at
current timestep.
Shared U

Often, g = tanh

Recurrent Neural Networks: Process Sequences

CS231n: Convolutional Neural Networks

Depth

• We can stack multiple hidden layers in the RNN and connect them.

• Each layer has its own weight matrix for hidden states (W) and inputs (U) are:

h1
1

h1
2 h1

3 … h1
t-1

h1
t

x1 x2 x3 xt-1 xt

h2
1

h2
2 h2

3 h2
t-1

h2
t…

y1
y2 y3 yt-1 yt

RNN with two layers.

Input from the
previous layer (= x at
layer 1)

Bidirectionality

h1
h2 h3 … ht-1

ht

x1 x2 x3 xt-1 xt

h1
h2 h3 ht-1

ht…

y1
y2 y3 yt-1 yt

Gating (brief outline)

RNNs can handle arbitrary sequences, but they do forget!

• During training, long-distance dependencies are “lost” as the impact
of early elements is diminished over time.

Gated Recurrent Unit (GRU)

Long Short-term Memory (LSTM) network

• Two variations of RNNs use “gates” to allow the network to selectively
retain or “forget” information.

Training with cross-entropy loss

RNN

<START>

this

Input x

Prediction y

Softmax

Loss

Reference

- log ythis

RNN

this

morning

- log ymorning

… … … RNN

vet

vet

- log yvet

Loss is averaged over the
sequence:

Prediction with a trained RNN

RNN

<START>

this

Input x

Prediction y

Softmax

RNN

this

morning

… … … RNN

vet

vet

Encoder-Decoder Architecture

Causal (“auto-regressive”) generation

• Basic idea: condition next word prediction on the preceding word, plus the
hidden state.

RNN

<START>

this

Input x

Prediction y

Softmax

RNN

this

morning

… … … RNN

vet

vet

Causal (“auto-regressive”) generation

• At each time step t, sample from the vocabulary V, and choose the
most likely next element, based on:
• Current hidden state (which accumulates the representation up to t-1)
• Previous word generated at t-1

• Notice, however, that this generates random sequences.
• What is the text being generated actually about?

• Suppose we want to generate from some input?
• Idea: condition word choice based on the input, as well as previously

generated words.

Encoder-Decoder architecture

ENCODER
• Transform input to a

vector representation (the
context).

• Representation is available
in the network’s hidden
layer.

DECODER
• Conditioned on hidden

state of the encoder.
• Produce output by

sampling from a
probability distribution.

• At each time-step, we
predict the next token.

Sutskever, I., Vinyals, O., & Le, Q. V. (2014). Sequence to sequence learning with neural networks. Advances in Neural Information Processing Systems 27 (NIPS’14), 3104–3112.
http://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural

Cho, K., van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., & Bengio, Y. (2014). Learning Phrase Representations using RNN Encoder–Decoder for Statistical Machine
Translation. Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), 1724–1734. https://doi.org/10.3115/v1/D14-1179

ENCODER
DECODER

(= a language model)

Input text or data

context

Output text

http://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural
https://doi.org/10.3115/v1/D14-1179

Encoder-Decoder architecture

Example from the WebNLG challenge
https://webnlg-challenge.loria.fr/challenge_2020/

ENCODER
DECODER

(= language model)context

Encoder-Decoder architecture

ENCODER

DECODER
(= language model)context

Image and caption taken from the COCO Challenge.
https://cocodataset.org/#captions-2015

Where do we factor in the context?

Various ways to do this. Here are two:

Initialise
• Initialise the decoder with the encoder’s last hidden state
• During decoding, decoder predicts the next element with the previous

hidden state and the predictions generated so far.

Use context at each step
• Inject the context into each time-step of the decoder
• At each timestep, decoder predicts based on its previous hidden state,

predictions generated so far, and the context.

The encoder-decoder model at inference
time (NB: context injected at each step)

y1 yn<START>

he
1

x1

he
2

x2

he
n

xn

... hd
1 hd

2 hd
n

...

y1 y2 <END>

he
n = hd

1

Where does attention come into the picture?

The original E-D creates a bottleneck: All the input is compressed into a dense
representation, which is used throughout decoding.

Attention mechanisms allow the decoder to learn to differentiate between parts of the input
context. So at each time-step, we train it to pay more attention to relevant portions of the
input.

Transformers are based on a generalization of the attention mechanism.

ENCODER
DECODER

(= language model)

Input text or data

context

Output text

he
1

x1

he
2

x2

he
n

xn

...

hd
1

hd
2 …

y1

What is the relevant context at hd
2?

Take hd1
Compare it to each of: he

1 to he
n

Weight context vector accordingly

Attention in Encoder-Decoder models

Decoder

Encoder

Attention in Encoder-Decoder models

• Suppose input is of length n. Then the Encoder has n states,
one for each time-step (word etc): he

1...he
n

• Let ci be the decoder context at timestep i. We want this to
reflect how relevant each encoder state is to the decoder
state hd

i-1.
• We capture this by comparing hd

i-1 to each encoder state he
j.

Attention in Encoder-Decoder models

1. Capture their similarity: compare the decoder state to each encoder state:

2. Normalise scores using softmax (turn them into a distribution):

3. Use that distribution to compute a weighted average over all the hidden
encoder states:

What does this do?

• Hopefully, during training, we achieve a way to identify, at each time-
step in the decoder, which part of the source encoding is most
relevant.

yiYi-1

he
1

x1

he
2

x2

he
n

xn

...

hd
i-1 hd

i ...

yi Yi+1

α1,i-1 α2,i-1 αn,i-1

Attention as “alignment”

38

Xu, K., Ba, J. L., Kiros, R., Cho, K., Courville, A., Salakhutdinov, R., Zemel, R. S., & Bengio, Y.
(2015). Show, Attend and Tell: Neural Image Caption Generation with Visual Attention.
Proceedings of the International Conference on Learning Representations (ICLR’15).
http://arxiv.org/abs/1502.03044

Bahdanau, D., Cho, K., & Bengio, Y. (2015). Neural Machine Translation By Jointly
Learning To Align and Translate. Proceedings of the International Conference on
Learning Representations (ICLR’15), 1–15.
https://doi.org/10.1146/annurev.neuro.26.041002.131047

https://doi.org/10.1146/annurev.neuro.26.041002.131047

Summary for today

• Language modelling objective
• Basically, word prediction given a preceding context.

• Recurrent networks
• Architecture to handle sequences of arbitrary length.

• Endoder-Decoder
• Architecture (originally with RNNs) to drive a language model to generate,

conditioned on input context.

• Attention
• Key step to condition the LM selectively on different parts of the input, at each

timestep.

What’s next?

• The current generation of “large language models” is based on
Transformer architectures.

• These generalise the notion of attention, while removing recurrence
completely.

• Next time:
• Generalisation of attention

• Transformers and self-attention

• Concrete examples of transformer-based LMs.

	Slide 1: Introduction to Large Language Models
	Slide 2: Goals of this short course
	Slide 3: Language modelling
	Slide 4: It’s about sequences
	Slide 5: Sequence modelling
	Slide 6: Approach 1: fixed window (n-grams)
	Slide 7: Would a bigram model handle this?
	Slide 8: Long-distance dependencies
	Slide 9: Bag of words?
	Slide 10: Suppose we use a really big fixed-window?
	Slide 11: Long-distance dependencies (again)
	Slide 12: Summary: The challenges of sequences
	Slide 13: Recurrent networks
	Slide 14: Recurrent Neural Networks (RNNs)
	Slide 15: Recurrent Neural Network
	Slide 16: Recurrent Neural Network
	Slide 17: Unrolled RNN
	Slide 18: Recurrent neural network: parameters
	Slide 19: Recurrent Neural Networks: Process Sequences
	Slide 20: Depth
	Slide 21: Bidirectionality
	Slide 22: Gating (brief outline)
	Slide 23: Training with cross-entropy loss
	Slide 24: Prediction with a trained RNN
	Slide 25: Encoder-Decoder Architecture
	Slide 26: Causal (“auto-regressive”) generation
	Slide 27: Causal (“auto-regressive”) generation
	Slide 28: Encoder-Decoder architecture
	Slide 29: Encoder-Decoder architecture
	Slide 30: Encoder-Decoder architecture
	Slide 31: Where do we factor in the context?
	Slide 32: The encoder-decoder model at inference time (NB: context injected at each step)
	Slide 33: Where does attention come into the picture?
	Slide 34
	Slide 35: Attention in Encoder-Decoder models
	Slide 36: Attention in Encoder-Decoder models
	Slide 37: What does this do?
	Slide 38: Attention as “alignment”
	Slide 39: Summary for today
	Slide 40: What’s next?

