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Goals of this short course

* Main goal: understanding the fundamentals of (large) language
models

—>The language modeling objective

—>Sequences and the encoder-decoder architecture
- Attention

-2 Transformer models



Language modelling



't’s about sequences

e “This morning | took the dog for a walk.”
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Sequence modelling

This morning | took the dog for a....... walk

This morning | took the dog to the......vet

Given: history/context ‘ ‘

predict what comes next



Approach 1: fixed window (n-grams)

* Model the sequence in terms of smaller sub-sequences of length n
(e.g.n=1, 2 or 3)

n

* Unigram (1-gram): P (&1, ..., Zp) & Hp(ﬂﬁz)
i=1

e Bigram: p(wn\ﬁl,u oy L — 1) (xn‘xn 1)



Would 3 b'gram model handle this?

P (T |T1y ey Tro1) = p(Tp|Tn_1)

This morning | took the dog for a....... walk

This morning | took the dog to the......vet

Given: history/context ‘ ‘

p(walk | this morning...) = p(walk | a)
p(vet | this morning...) = p(vet | the)

But surely, predicting walk/vet also depends on dog?

With a simple Markov model like this, we cannot model long-term
dependencies.



Long-distance dependencies

Word probabilities:

In Spain, | ate a lot of paella and learnt some Spanish.

Pronouns and their antecedents:
John told me he was leaving on the 24th.
Mary told me she was leaving on the 24th.



Bag of words?

* |dea: treat the whole sequence as a multiset (“bag”), where each
element is represented by a count.

* We can also weight such counts in various ways, e.g. TF/IDF

- morning I took . - .I

* But BoW doesn’t preserve order. These two are equivalent:
* In Spain, | ate a lot of paella and learnt some Spanish.
* | ate some paella and learnt a lot of Spanish in Spain.



Suppose we use a really big fixed-window?

* More or less, like using n-grams with larger values for n
e E.g. consider previous 5 words

This morning | took the dog to the......vet



Long-distance dependencies (again)

m) Distance is not fixed:
John, who is my mother’s brother, told me he was leaving on the 24th.
Mary, who is my father’s sister, told me she was leaving on the 24th.



Summary: The challenges of sequences

ldeally, we want to deal with:

* variable length

e order preservation

* long-distance dependencies

e parameter sharing across the sequence



Recurrent networks



Recurrent Neural Networks (RNNs)

 Rationale:

* Rather than fixing the amount of history our network can handle, we allow it
to accumulate a representation over time.

* This can work over arbitrary sequences.

* Hopefully, it will also encode similar things in similar ways (less
representational redundancy).

* In the accumulated representation, it should also capture dependencies
between elements at different (possibly distant) time-steps.



Recurrent Neural Network
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Recurrent Neural Network

Output y Output y Outputy
this morning walk

| |
T

| | |

Input x Input x Input x
<START> <START> this <START> this morning | took the dog for a

RNN maintains a hidden state across timesteps which
accumulates the sequence representation.



Unrolled RNN
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* Processes a sequence X;,..., X, vVia hidden units h,,...,h, to yield an output sequence.
* Key property: share parameter matrices U, W and V across time.

Yt



Recurrent neural network: parameters

Y1 Y2 Y3 Yia Vi
v v 74 v "4
w w w w
h,
U U U U U
X1 X2 X3 X1 Xy
 Recurrence formula Often, g = tanh

hy = f (ht—la-fl?t) — g (Wht—l + UCIS't)
Previous hidden state  Input vector at

yt p— V ht Shared W current timestep.

Shared U



Recurrent Neural Networks: Process Sequences

one to one one to many many to one many to many many to many

CS231n: Convolutional Neural Networks



Depth

oL L
QOG-
DR OROREGRO

* We can stack multiple hidden layers in the RNN and connect them.

* Each layer has its own weight matrix for hidden states (W) and inputs (U) are:

[ [ 11 Input from the
ht — g (W ht—]. _|_ previous layer (= x at

layer 1)



Bidirectionality




Gating (brief outline)

RNNs can handle arbitrary sequences, but they do forget!

* During training, long-distance dependencies are “lost” as the impact
of early elements is diminished over time.

Gated Recurrent Unit (GRU)
Long Short-term Memory (LSTM) network

* Two variations of RNNs use “gates” to allow the network to selectively
retain or “forget” information.



Training with cross-entropy loss

Loss is averaged over the

Reference this morning vet sequence:
R L
) = Leg
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prediction 1 1 1 Lop = —logy,
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Input x <START> this vet



Prediction with a trained RNN

Prediction y this morning

Y Y

Softmax . .

T T
I I

Input x <START> this



Encoder-Decoder Architecture



Causal (“auto-regressive”) generation

* Basic idea: condition next word prediction on the preceding word, plus the
hidden state.

Prediction y this morning vet

T T T

Softmax l. ln. .

T T !
T T T

Inputx  <START> this vet



Causal (“auto-regressive”) generation

e At each time step t, sample from the vocabulary V, and choose the
most likely next element, based on:

e Current hidden state (which accumulates the representation up to t-1)
* Previous word generated at t-1

* Notice, however, that this generates random sequences.
 What is the text being generated actually about?

* Suppose we want to generate from some input?

* |dea: condition word choice based on the input, as well as previously
generated words.



Encoder-Decoder architecture

[ Output text ]

| > DECODER

(= alanguage model)

context

Input text or data J

DECODER

e Conditioned on hidden
state of the encoder.

* Produce output by
sampling from a
probability distribution.

* At each time-step, we
predict the next token.

* Transform input to a
vector representation (the
context).

* Representation is available
in the network’s hidden
layer.

Sutskever, 1., Vinyals, O., & Le, Q. V. (2014). Sequence to sequence learning with neural networks. Advances in Neural Information Processing Systems 27 (NIPS’14), 3104-3112.
http://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural

Cho, K., van Merriénboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., & Bengio, Y. (2014). Learning Phrase Representations using RNN Encoder—Decoder for Statistical Machine
Translation. Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), 1724—1734. https://doi.org/10.3115/v1/D14-1179



http://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural
https://doi.org/10.3115/v1/D14-1179

Encoder-Decoder architecture

(b) English text
Trane, which was founded on January 11 1913 in La Crosse, Wisconsin, is based in Ireland. It has 25,000 employees.
(c) Russian text

Komnarwa "Tpare', ocHosaukas 1 aweapa 1913 roga s Jla-Kpocee 8 wrate BuckoHcuH, HaxoguTes 8 Mpnawguy. B
KOMMaHuH padoTakoT 29 ThicaY YEMoBex.

ENCODER | > DECODER

Prrrrt

<entry category="Company” eid="Id21" shape="(X (X) (X) (X) (X])" shape_type="sibling" size="4">
<modifiedtripleset»
<ntriple=Trane | foundingDate | 1913-81-81</ntriple:
<ntriplesTrane | location | Irelande/mtriples
<ntriplesTrane | foundationPlace | La_Crosse, Wisconsine/miriples
<ntriplesTrane | numberOfEmployees | 29866</mtriple>
</modifiedtriplesets
¢/entry>

(= language model)

Example from the WebNLG challenge
https://webnlg-challenge.loria.fr/challenge_2020/



Encoder-Decoder architecture

A large bus sitting next to a very tall
building.

ENCODER

| > DECODER

( = language model)

context

Image and caption taken from the COCO Challenge.
https://cocodataset.org/#captions-2015



Where do we factor in the context?

Various ways to do this. Here are two:

Initialise
 |nitialise the decoder with the encoder’s last hidden state

* During decoding, decoder predicts the next element with the previous
hidden state and the predictions generated so far.

Use context at each step
* |Inject the context into each time-step of the decoder

e At each timestep, decoder predicts based on its previous hidden state,
predictions generated so far, and the context.



The encoder-decoder model at inference
time (NB: context injected at each step)
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Where does attention come into the picture?

[ Output text ]

| > DECODER

(= language model)

context

[ Input text or data J

The original E-D creates a bottleneck: All the input is compressed into a dense
representation, which is used throughout decoding.

Attention mechanisms allow the decoder to learn to differentiate between parts of the input

context. So at each time-step, we train it to pay more attention to relevant portions of the
iNput.

Transformers are based on a generalization of the attention mechanism.



Attention in Encoder-Decoder models

Y1

Decoder

ONON

What is the relevant context at hd,?
° 0 Take h91
Compare it to each of: he, to he,
Weight context vector accordingly
X1 X3 Xn

Encoder




Attention in Encoder-Decoder models

* Suppose input is of length n. Then the Encoder has n states,
one for each time-step (word etc): h®,...he

* Let ¢, be the decoder context at timestep i. We want this to
reflect how relevant each encoder state is to the decoder
state hd. ..

We capture this by comparing h., to each encoder state he,.



Attention in Encoder-Decoder models

1. Capture their similarity: compare the decoder state to each encoder state:
. d 1.ey __ 1.d e
score(hy, h5) = hy - h;

2. Normalise scores using softmax (turn them into a distribution):

a;j = softmax(score(h, h),Vj € e)

3. Use that distribution to compute a weighted average over all the hidden

encoder states:
e
Ci = E ﬂf,‘jhj
J



What does this do?

* Hopefully, during training, we achieve a way to identify, at each time-
step in the decoder, which part of the source encoding is most
relevant.




Attention as “alignment”
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Bahdanau, D., Cho, K., & Bengio, Y. (2015). Neural Machine Translation By Jointly
Learning To Align and Translate. Proceedings of the International Conference on
Learning Representations (ICLR’15), 1-15.
https://doi.org/10.1146/annurev.neuro.26.041002.131047

A stop sign is on a road with a
mountain in the background,

A woman holding a clock in her hand,

Xu, K., Ba, J. L., Kiros, R., Cho, K., Courville, A., Salakhutdinov, R., Zemel, R. S., & Bengio, Y.
(2015). Show, Attend and Tell: Neural Image Caption Generation with Visual Attention.
Proceedings of the International Conference on Learning Representations (ICLR’15).
http://arxiv.org/abs/1502.03044
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https://doi.org/10.1146/annurev.neuro.26.041002.131047

Summary for today

* Language modelling objective
* Basically, word prediction given a preceding context.

* Recurrent networks
* Architecture to handle sequences of arbitrary length.

* Endoder-Decoder

* Architecture (originally with RNNs) to drive a language model to generate,
conditioned on input context.

e Attention

» Key step to condition the LM selectively on different parts of the input, at each
timestep.



What’s next?

* The current generation of “large language models” is based on
Transformer architectures.

* These generalise the notion of attention, while removing recurrence
completely.

* Next time:
e Generalisation of attention
* Transformers and self-attention
* Concrete examples of transformer-based LMs.
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