
Introduction to Large
Language Models

Albert Gatt & Ayoub Bagheri

Utrecht University

Goals of this short course

• Main goal: understanding the fundamentals of (large) language
models

→The language modeling objective

→Sequences and the encoder-decoder architecture

→Attention

→Transformer models

How the story ended last time

• Hopefully, during training, we achieve a way to identify, at each time-
step in the decoder, which part of the source encoding is most
relevant.

yiYi-1

he
1

x1

he
2

x2

he
n

xn

...

hd
i-1 hd

i ...

yi Yi+1

α1,i-1 α2,i-1 αn,i-1

Generalising the idea of attention

• Transformer models are based on the following key ideas:
1. We can take the notion of attention and generalise it. Fundamentally, it’s a

mechanism to learn meaningful relationships between elements. E.g.:
• Better meaning representations: given a word, we can allow an encoder to learn its

linguistic behaviour by looking at surrounding words.
• More fluent text generation: given some context (a “prefix”), a decoder can learn to

model the probability of next tokens by attending to all elements of the context.

2. We can drop the idea of recurrence. (I.e. We no longer model sequences
with RNNs)
• This ovecomes memory problems (but incurs some costs).
• It also means we can compute relationships between multiple elements in parallel

(because we’re not restricted to sequential processing).

Self-attention
The core operation in Transformers

Let’s generalize our terminology first

In the original E-D model with attention, we are computing a context vector which is a
distribution over the encoder hidden states.

Score by “relatedness” or “similarity”

Turn scores into weights, reflecting
the relevance of each element j to
element i

Sum the inputs seen so far,
weighted by their relevance (alpha
value)

Inputs in self-attention computation play 3
different roles at different points.
• Query: the current focus element (i)

• Key: the other elements (j) to which we
compare the query.

• Value: used to compute the output for the
current focus of attention

Self-Attention in Transformers: Single output

Basic idea: capture the
key/query/value roles of the
input through learnable weight
matrices.

Score is the dot product between the query vector of xi and other element’s
key vectors kj. All of dimensionality 1 * d.
Since this can become quite big, we scale it by a factor proportional to the
vector dimension.

Softmax (as before)

Final calculation is based on a weighted sum over the value vectors.

Here is what happens for a
single output:

Self-Attention in Transformers: Entire sequence
Basic idea: capture the
key/query/value roles of the input
through learnable weight matrices.

We can now precompute all the
queries, keys and values…

Also, we can:

• compute all the Q/K comparisons

• Scale

• Apply softmax

• Multiply by V

Suppose input is of length N. Break it up
into N tokens, and represent it as matrix X:
one token per row. Column dimensions are
embeddings (dense representations for
the input tokens).

What about order?

Simple solution:

• Combine the input
representations X with
positional embeddings.

• E.g. x = Janet will back the bill.

Problem:

For the edge cases (e.g. words at
the end of very long sentences)
we will have very few examples.
These embeddings will be poorly
trained.

Better idea:

Use a static function which
maps the integer position to a
real value, which captures the
relative position of tokens.

Image from: Jurafsky & Martin, Ch. 9

The Self-Attention Head

X

P

+

WQ

WK

WV

The transformer block and
transformer architectures

Transformer block

• Block structure:

1. Self-attention layer

2. Feedforward layer
with residual
connections.

• LayerNorm is used to keep
the resulting values within
narrow ranges to facilitate
training.

• We normalize values
with mean 0 and SD of
1. Self-Attention Layer

Layer Normalisation

Feedforward Layer

Layer Normalisation

Input text or data:
x1, ..., xn

Prediction: yn

Residual connection:
Input is a concatenation of:
(a) Output of previous

layer
(b) The input to the

previous layer

This helps to avoid loss of
information.

Multihead attention

X

P

+

WQ

WK

WV

Head 1

Head 2

Head 3

Multihead attention layer

• With a single Self-Attention head,
we learn how to capture one type of
relationship between input tokens.

• Transformers usually have multiple
attention heads in each block. This
enables the model to learn different
types of relationships.

• Operation:
• Apply SA in multiple heads, each with

its own parameters.

• Concatenate the outputs of each

• Project to a fixed dimensionality

Head 1
WQ

1, WK
1 , WV

1

Input text or data:
x1, ..., xn

v

Prediction: yn

Head 3
WQ

3, WK
3, WV

3

Head 2
WQ

2, WK
2, WV

2

Concatenate outputs from all heads

Projection to a dimension d

Gains and costs

Training

• Attention computations can be parallelised (we just multiply Q,K,V
matrices)

• Memory ~ O(N2) for input of length N, since we have N x N matrices to
compute softmax between Q and K

• We no longer have sequential processing as in RNNs

Inference costs

Transformer architectures

Three classes of transformer models
• Encoders

• Use self-supervised learning to learn representations (e.g. of words in
context)

• Transformer-based language models are encoders
• Well-known examples: BERT and its descendants (Devlin et al, 2019)

• Decoders
• Auto-regressive models for generation
• Well-known examples: the GPT family of models (Brown et al, 2021)

• Encoder-decoder transformers
• E.g. for machine translation, summarisation etc.
• Transformers were first proposed for MT (Vaswani et al, 2017).

Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2019). BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. Proceedings Of NAACL-HLT 2019, 4171–4186.
https://doi.org/arXiv:1811.03600v2

Brown et al (2021). Language models are few-shot learners. https://arxiv.org/abs/2005.14165

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., & Kaiser, Ł. (2017). Attention Is All You Need. Proceedings of the 31st Conference on Neural Informaton Processing Systems (NIPS’17).

https://doi.org/arXiv:1811.03600v2
https://arxiv.org/abs/2005.14165

Decoders: causal language models

• We can train the transformer to predict the next word in a
sequence, using teacher forcing.

• Training objective: Cross-Entropy loss (as usual).

Big advantage:

• Model is not recurrent.

• All inputs/outputs can be computed in parallel.

Decoders: causal language models

• When we compare Q and K above, we are including both the
elements before and after the query.

• If we are decoding, we can’t look ahead.

• Once way around this is to set the upper triangular part of the matrix to zero
(or –inf)

Credit: J&M, 3rd Ed, Ch 9

Training the transformer
decoder

Task: predict the next word based

on the entire previous context.

Teacher-forcing: during training,

- compute loss based on

prediction

- predict next token based on

reference text

Attention goes from the current

token, backwards (but not

forwards).

Loss: Compare the prediction to

the actual word using negative LL

(or cross-entropy). took the dog to the

-log ythe

theNext word:

Loss

Softmax
over vocab

Linear (logits)

Transformer block
(Multiple transformer layers)

Embedding

Prefix

… … …

vet

-log yvet

Inference:
How do we actually
sample?

At inference time, the decoder

needs to sample the next token

from the distribution.

What is the best strategy to do

this?
took the dog to the

Softmax
over vocab

Linear (logits)

Transformer block
(Multiple transformer layers)

Embedding

Prefix

How to choose
the next word?

Greedy sampling: choose
the most likely token at
each step.

Drawbacks:

Strategy can be too “local”

Choice always maximises the

probability at that point, given the

prefix.

Later tokens can make these

choices look less optimal.

→ Can result in disfluent text.

→ Text can be subptimal because

continuations do not

necessarily fit in context.

took the dog to the

Softmax
over vocab

Linear (logits)

Transformer block
(Multiple transformer layers)

Embedding

Prefix

Greedy:

ve
t

ch
e

ck
-u

p
sh

o
w

w
al

k

Beam search: Maintain k
sequences and expand in
parallel.

Algorithm:
H  current incomplete
sequences

At each time-step, do:
1. Choose the k most likely

tokens
2. Extend each sequence in H, to

yield |H| * k sequences
3. Compute the probability of

each resulting sequence.
4. Retain the k most probable

sequences.

Drawback:
→ In some contexts, it can
become very repetitive. Text
degeneration.

took the dog to the
a

Softmax
over vocab

Linear (logits)

Transformer block
(Multiple transformer layers)

Embedding

Prefix

Beam (e.g. k=2): th
e

a th
e

ve
t

a
sh

o
w

th

e
sh

o
w

a

ve
t

The quality-probability tradeoff

Pure sampling = sampling according to the probability distribution. (Different from greedy, which always
selects the most likely next token.) This can yield word salad.
Beam search can cause text degeneration (repetitiveness).

Some strategies manipulate the distribution:
• Top-k: at each step, restrict choice to the top k most probable tokens. Re-estimate probabilities

accordingly.
• Top-p (nucleus): Sample only from tokens whose cumulative probability mass is p (e.g. 95%).
• Temperature: Use a temperature parameter to skew probabilities more (or less) towards high-

probability tokens.

Holtzman, A., Buys, J., Du, L., Forbes, M., & Choi, Y. (2020). The curious case of neural text degeneration. Proceedings of the 2020 Conference on Learning Representations (ICLR’20), 2540.

Fan, A., Lewis, M., & Dauphin, Y. (2018). Hierarchical neural story generation. Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (ACL’18), 1, 889–898.
https://doi.org/10.18653/v1/p18-1082

https://doi.org/10.18653/v1/p18-1082

Bidirectional encoders (BERT, etc)

• Allow the self-attention mechanism to range over all the input.

• In other words, self-attention can look both forward and back to
learn richer contextual representations of tokens.

How is BERT trained?

• Corpus of actual sentences, unlabelled.

• Masked Language Modelling:
• In a given sentence, replace a proportion of words with <MASK>
• Train the model to predict the masked tokens in context.

• Next-Sentence Prediction:
• Predict whether sentence p follows sentence q in the original text.

• See: Devlin et al, 2019

Variation

• SpanBERT (Joshi et al, 2020) train a BERT model to predict masked
spans of arbitrary length.

Joshi, M., Chen, D., Liu, Y., Weld, D. S., Zettlemoyer, L., & Levy, O. (2020). SpanBERT: Improving Pre-training
by Representing and Predicting Spans. Transactions of the Association for Computational Linguistics, 8, 64–
77. https://doi.org/doi.org/10.1162/tacl a 00300

Images: J&M Ch. 11

https://doi.org/doi.org/10.1162/tacl%20a%2000300

Multimodal encoders

• Extension of the BERT idea, but
combine visual and linguistic
inputs.

• Input: large corpus of images with
corresponding descriptions.

• Masked objective: mask words
and/or image regions

• Instead of next-sentence
prediction: image-sentence
alignment probability.

• Example: VisualBERT

Li, L. H., Yatskar, M., Yin, D., Hsieh, C.-J., & Chang, K. (2019). VisualBERT: A simple and performant baseline for vision and language. ArXiv Preprint 1908.03557.
https://doi.org/10.1007/s11159-020-09831-4

NB: Visual backbone can
itself be a pretrained CNN.

https://doi.org/10.1007/s11159-020-09831-4

How should we use such encoders?

• The goal is transfer learning.

• Train model on a large dataset, acquiring rich representations (of
language, or something else).

• Once pretrained, model can serve as the foundation for other
applications.

• Fine-tune the model with labelled data.

• Should need less data given the pre-training.

• E.g.: Add a feedforward layer on top of BERT to perform sentiment
classification of tweets.

Back to the encoder-decoder idea

• The first transformer was an
encoder-decoder for Machine
Translation (Vaswani et al, 2017).

• Notice how the decoder attends
both to the output of the encoder,
and to its own preceding predictions.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., & Kaiser, Ł. (2017). Attention Is All You
Need. Proceedings of the 31st Conference on Neural Information Processing Systems (NeurIPS’17).

Beyond text
• Transformers have in recent years become prominent in other fields.

Computer vision

• Vision transformers (e.g. Dosovitsky et al, 2020)

• Represent image as a mosaic of fixed-size areas (16*16 pixel).

• Trained with similar objectives as BERT.

Speech

• Wav2Vec 2 (Baevski et al, 2020)

• Extract features from speech using a CNN

• Learn rich representations using a Transformer.

Dosovitskiy, A., Beye, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., & Houlsby, N. (2020). An image is worth 16x16 words:
Transformers for image recognition at scale. ArXiv, 2010.11929.

Baevski, A., Zhou, H., Mohamed, A., & Auli, M. (2020). wav2vec 2.0: A Framework for Self-Supervised Learning of Speech Representations. ArXiv, 200611477, 1–19.

LLMs now
Going beyond the language modelling objective

Many contemporary LLMs are decoders

• Recent models generalize the language model objective: Generate text based on a prompt.

• Models of sufficient size (#parameters) trained on very large datasets display very flexible
capabilities.

LANGUAGE MODEL

Input prefix:
Prompt or instruction

Data or text.

Output text = continuation

Size matters

LM performance, measured in terms of loss on a
held-out set, scales with model size, dataset size and
amount of compute.

“Performance depends strongly on scale, weakly on
model shape (e.g. depth vs width)”.

(More recent results suggest a somewhat different
picture.)

Kaplan, J.,et al. (2020). Scaling Laws for Neural Language Models (arXiv:2001.08361). arXiv. http://arxiv.org/abs/2001.08361

Implications:

● Increasing focus on very large datasets
and models

● Significant computing resources

Hoffmann, J., et al.. (2022). Training Compute-Optimal Large Language Models (arXiv:2203.15556). arXiv. https://doi.org/10.48550/arXiv.2203.15556

http://arxiv.org/abs/2001.08361
https://doi.org/10.48550/arXiv.2203.15556
https://doi.org/10.48550/arXiv.2203.15556

Pretraining vs in-context learning

Pretraining: unsupervised,
based on the LM objective.
Model should develop core
knowledge/skills (of what?)

In-context learning:
training in the context of a
specific task (e.g. translate
from L1 to L2). How does
this happen?

Method 1: Fine-tune (with or
without explicit instructions) Method 2: Few-shot

Method 3: Zero-shot

Brown, T. B., et al. (2020). Language Models are Few-Shot Learners. Proceedings of Advances in
Neural Information Processing Systems 33 (NeurIPS’20), 1877–1901.
http://arxiv.org/abs/2005.14165

http://arxiv.org/abs/2005.14165

Summary of the contemporary picture
(partial)

35

Pretrained
model

Fine-tuning

Self-supervised using
LM objective.
Can rely on large
amounts of existing
text.

On input-output pairs, such as:
• Data-text (data to text)
• Text-text (machine translation,

summarisation)

In-context learning

No finetuning.
Give model some examples. Model
generalizes to new inputs with no gradient
updates.

Involve
modifications
to the model
(gradient
updates)

Is language modelling the only objective we
need?

Mcguffie, K., & Newhouse, A. (2020). The radicalization risks of GPT-3 and advanced neural language models. Technical Report,
Middlebury Institute of International Studies at Monterey.

GPT-3, zero-shot (no fine-tuning)

GPT-3, few-shot (with a handful of “conspiracy”
examples), i.e. “in-context” learning.

An example from GPT-3

Model initially generates

factual, “objective”

response to query.

In a few-shot setting, with

some “toxic” examples, the

output looks very different.

Clearly dependent on

pretraining data.

Large NLG models are hard to control

Too much data

Datasets are extremely large and opportunistically sourced.

Hard to ensure that data does not contain harmful content.

Data is also not representative of social, demographic and ethnic diversity.

Models are very large, nonlinear and stochastic

This makes models harder to control.

Output can be irrelevant to a user’s query or intent.

It can also be harmful or toxic.

→ How can we ensure that models generate relevant and non-harmful content?

Bender, E. M., Gebru, T., McMillan-Major, A., & Shmitchell, S. (2021). On the Dangers of Stochastic Parrots: Can Language Models Be Too Big? Proceedings of the Fourth ACM Conference on Fairness, Accountability, and
Transparency (FAccT’21).

Summary of the contemporary picture -- modified

39

Pretrained
model

Fine-tuning

Self-supervised using
LM objective.
Can rely on large
amounts of existing
text.

On input-output pairs, such as:
• Data-text (data to text)
• Text-text (machine translation,

summarisation)

In-context learning

Instruction tuning

Data consists of prompts/instructions +
input/output pair.
Model is fine-tuned to learn to follow
instructions.

No finetuning.
Give model some examples. Model
generalizes to new inputs with no gradient
updates.

Involve
modifications
to the model
(gradient
updates)

Summary of the contemporary picture -- modified

40

Pretrained
model

Fine-tuning

Self-supervised using
LM objective.
Can rely on large
amounts of existing
text.

In-context learning

Instruction tuning

Instruction + input/output pair

Explain how to make linguine with
tomato sauce.

Ouyang, L., Wu, J., Jiang, X., Almeida, D., Wainwright, C. L., Mishkin, P., Zhang, C., Agarwal, S., Slama, K., Ray, A., Schulman, J.,
Hilton, J., Kelton, F., Miller, L., Simens, M., Askell, A., Welinder, P., Christiano, P., Leike, J., & Lowe, R. (2022). Training language
models to follow instructions with human feedback (arXiv:2203.02155). arXiv. https://doi.org/10.48550/arXiv.2203.02155

To make linguine…

Buy some durum flour…

Tomatoes…

Compare
against
reference
outputs.
Update model.

https://doi.org/10.48550/arXiv.2203.02155

But all of this is supervised.

We are still finetuning models based on their token prediction, and

comparing to the human-written reference text.

→ This makes the model a “parrot”. There is more than one way to respond

to an instruction, and human references do not cover the whole space.

→ This method only allows for positive feedback (model is shown what it

should do, but not what it can’t).

→ If a model is asked to perform a task which it has no knowledge of, it will

still try to generate something. I.e. it will lie or make something up.

→ If a model’s pretraining data contains harmful text, we still have no way

of ensuring it won’t output such text.

Goldberg, Y. (2023). Reinforcement Learning for Language Models.
https://gist.github.com/yoavg/6bff0fecd65950898eba1bb321cfbd81

https://gist.github.com/yoavg/6bff0fecd65950898eba1bb321cfbd81

Summary of the contemporary picture -- completed

42

Pretrained
model

Fine-tuning

Self-supervised using
LM objective.
Can rely on large
amounts of existing
text.

In-context learning

Instruction tuning

Involve
modifications to
the model
(gradient
updates)

Reinforcement
learning with

human feedback

Train a policy based on human
feedback to predict which
response is appropriate given
a prompt/query.
Fine-tune the model with this
policy.

Zooming in on RLHF

43

Pretrained model

Fine-tuning

Self-supervised using
LM objective.

Can rely on large

amounts of existing

text.

In-context learning

Instruction tuning

Reinforcement

learning with human
feedback

A: To make linguine…

2. Human Feedback and reward model:
Rank answers for truthfulness, helpfulness
and harmlessness
→ B >> A >> C
Use this data to learn how to predict a
“reward” based on human preferences.

3. Reinforcement learning:

Prompt the LM with a new instruction.
Score the output with a reward.
Update the LM with the reward as
feedback.

1. Instruction + input/output pair

Explain how to make linguine with tomato

sauce.

B: Buy some durum flour…

C: Tomatoes…

Summary of the contemporary picture -- completed

44

Pretrained model

Fine-tuning

Self-supervised using
LM objective.

Can rely on large

amounts of existing

text.

In-context learning

Instruction tuning

Involve

modifications to

the model

(gradient

updates)

Reinforcement

learning with human
feedback

Train a policy based on

human feedback to predict

which response is

appropriate given a
prompt/query.

Fine-tune the model with

this policy.

Where does this leave us?

There are some very important open questions:

Reinforcement learning and instruction tuning are intended to “align”
models with human communicative intentions and social norms.

Here are some important open areas of research:

→ RLHF is a very expensive method. Can it be (partially) automated?
→ Who are we aligning to? It is possible that our use of RL is still prey to

bias.
→ Models still output harmful or irrelevant or non-factual text. How can this

behaviour be controlled?

Some current challenges

Fluency and potential misuse

47

Some investigators struggle to reach Comey. “Like Louis XVI, he
doesn’t see the storm growing in the distance,” says the
Democratic operative. The lack of specifics, even from surrogates
on Trump’s behalf, forces well-known Democrats to point out the
obvious.

Uchendu, A., Ma, Z., Le, T., Zhang, R., & Lee, D. (2021). TURINGBENCH: A Benchmark Environment for Turing Test in the Age of Neural Text Generation. ArXiv http://arxiv.org/abs/2109.13296

Holtzman, A., Buys, J., Du, L., Forbes, M., & Choi, Y. (2020). The curious case of neural text degeneration. ICLR
Ippolito, D., Duckworth, D., Callison-Burch, C., & Eck, D. (2020). Automatic Detection of Generated Text is Easiest when Humans are Fooled. ACL

• Some success at detecting auto-generated text automatically.
• Human detection accuracy: at chance, and worse as the model gets larger.

• Fluency-diversity trade-off:

• More fluency → lower detectability by humans

• Statistical patterns (e.g. “burstiness”, lexical diversity) distinguish human from model text. Can be

picked up by automatic classifiers.

• This varies depending on the decoding algorithm (i.e. how you actually sample from the vocab

during the sequence prediction task).

http://arxiv.org/abs/2109.13296

Hallucination and omission

E2E Dataset (restaurant recommendations)

Input: semantic representations (Dusek et al, 2018)

Dušek, O., Novikova, J., & Rieser, V. (2018). Findings of the E2E NLG Challenge. Proceedings of the 11th International Natural Language Generation Conference (INLG’18), 322–328. https://doi.org/10.18653/v1/w18-6539
Faille, J., Gatt, A., & Gardent, C. (2021). Entity-based semantic adequacy for data-to-text generation. Findings of the Association for Computational Linguistics: EMNLP 2021. https://aclanthology.org/2021.findings-
emnlp.132/
Rohrbach, A., Hendricks, L. A., Burns, K., Darrell, T., & Saenko, K. (2018). Object Hallucination in Image Captioning. Proceedings Ofthe 2018 Conference on Empirical Methods in Natural Language Processing (EMNLP’18),
4035–4045. https://doi.org/10.18653/v1/d18-1437
González Corbelle, J., Bugarín-Diz, A., Alonso-Moral, J., & Taboada, J. (2022). Dealing with hallucination and omission in neural Natural Language Generation: A use case on meteorology. Proceedings of the 15th International
Conference on Natural Language Generation, 121–130. https://aclanthology.org/2022.inlg-main.10

WebNLG Example (Faille et al, 2021)

Image-to-text captioning model.

Input: image (Rohrbach et al, 2019)
Weather report (Gonzalez-Corbelle et al, 2022)

https://doi.org/10.18653/v1/w18-6539
https://aclanthology.org/2021.findings-emnlp.132/
https://aclanthology.org/2021.findings-emnlp.132/
https://doi.org/10.18653/v1/d18-1437
https://aclanthology.org/2022.inlg-main.10

Examples of omission

WebNLG Example (Faille et al, 2021)

Example shows both omitted information (underlined) and hallucinated information.

A typology of hallucinations

The intuition:

Hallucination occurs when output text has no basis in the input, or contradicts facts.

Ji et al 2023’s classification:

Intrinsic hallucination: The output directly contradicts the source input.

Extrinsic hallucination: The output cannot be directly verified from the source.

It isn’t always so straightforward. Which of the following would you accept as true?

Ji, Z., Lee, N., Frieske, R., Yu, T., Su, D., Xu, Y., Ishii, E., Bang, Y., Madotto, A., & Fung, P. (2022). Survey of Hallucination in Natural Language Generation. ACM Computing Surveys, 1(1). http://arxiv.org/abs/2202.03629

There will be showers.

It will be wet.

It will be very wet.

It will be cold.

http://arxiv.org/abs/2202.03629

Pragmatics and “sycophancy”

51

A lot depends on how you ask. Sometimes models seem to take for
granted the assumptions (presuppositions) behind an incorrect question.

Output generated on 3 December, 2023

Jailbreak attacks

52

Through a combination of instruction tuning, RLHF and additional security measures, we can
control how people use models.

But it is still possible to mount “attacks” to break through the checks and get the model to
show its true colours.

https://pointer.kro-ncrv.nl/chatgpt-en-criminaliteit

Open questions and
future challenges

1. Controlling output to be factual/faithful.

Which architectures work best?

2. Distinguishing generated from human text to

avoid harmful dual-use.

3. Developing effective methods to avoid bias

an toxicity, including data curation.

4. Evaluating NLG models in realistic scenarios,

not relying only on metrics.

5. Being open about how we develop models:

data, architectures and alignment policies.

World

• Accuracy wrt input

• Faithfulness and
truthfulness

Interpersonal
(pragmatics,
sociolinguistics)

• Alignment to communicative
intent

• Avoidance of harm

Language

• Quality and fluency

• Variation

	Slide 1: Introduction to Large Language Models
	Slide 2: Goals of this short course
	Slide 3: How the story ended last time
	Slide 4: Generalising the idea of attention
	Slide 5: Self-attention
	Slide 6: Let’s generalize our terminology first
	Slide 7: Inputs in self-attention computation play 3 different roles at different points.
	Slide 8: Self-Attention in Transformers: Single output
	Slide 9: Self-Attention in Transformers: Entire sequence
	Slide 10: What about order?
	Slide 11: The Self-Attention Head
	Slide 12: The transformer block and transformer architectures
	Slide 13: Transformer block
	Slide 14: Multihead attention
	Slide 15: Multihead attention layer
	Slide 16: Gains and costs
	Slide 17: Transformer architectures
	Slide 18: Three classes of transformer models
	Slide 19: Decoders: causal language models
	Slide 20: Decoders: causal language models
	Slide 21: Training the transformer decoder
	Slide 22: Inference: How do we actually sample?
	Slide 23: Greedy sampling: choose the most likely token at each step.
	Slide 24: Beam search: Maintain k sequences and expand in parallel.
	Slide 25: The quality-probability tradeoff
	Slide 26: Bidirectional encoders (BERT, etc)
	Slide 27: Multimodal encoders
	Slide 28: How should we use such encoders?
	Slide 29: Back to the encoder-decoder idea
	Slide 30: Beyond text
	Slide 31: LLMs now
	Slide 32: Many contemporary LLMs are decoders
	Slide 33: Size matters
	Slide 34: Pretraining vs in-context learning
	Slide 35: Summary of the contemporary picture (partial)
	Slide 36: Is language modelling the only objective we need?
	Slide 37: An example from GPT-3
	Slide 38: Large NLG models are hard to control
	Slide 39: Summary of the contemporary picture -- modified
	Slide 40: Summary of the contemporary picture -- modified
	Slide 41: But all of this is supervised.
	Slide 42: Summary of the contemporary picture -- completed
	Slide 43: Zooming in on RLHF
	Slide 44: Summary of the contemporary picture -- completed
	Slide 45: Where does this leave us?
	Slide 46: Some current challenges
	Slide 47: Fluency and potential misuse
	Slide 48: Hallucination and omission
	Slide 49: Examples of omission
	Slide 50: A typology of hallucinations
	Slide 51: Pragmatics and “sycophancy”
	Slide 52: Jailbreak attacks
	Slide 53: Open questions and future challenges

