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Goals of this short course

• Main goal: understanding the fundamentals of (large) language
models

→The language modeling objective

→Sequences and the encoder-decoder architecture

→Attention

→Transformer models



How the story ended last time

• Hopefully, during training, we achieve a way to identify, at each time-
step in the decoder, which part of the source encoding is most 
relevant.
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Generalising the idea of attention

• Transformer models are based on the following key ideas:
1. We can take the notion of attention and generalise it. Fundamentally, it’s a 

mechanism to learn meaningful relationships between elements. E.g.:
• Better meaning representations: given a word, we can allow an encoder to learn its 

linguistic behaviour by looking at surrounding words.
• More fluent text generation: given some context (a “prefix”), a decoder can learn to 

model the probability of next tokens by attending to all elements of the context.

2. We can drop the idea of recurrence. (I.e. We no longer model sequences 
with RNNs)
• This ovecomes memory problems (but incurs some costs).
• It also means we can compute relationships between multiple elements in parallel 

(because we’re not restricted to sequential processing).



Self-attention
The core operation in Transformers



Let’s generalize our terminology first

In the original E-D model with attention, we are computing  a context vector which is a 
distribution over the encoder hidden states.  

Score by “relatedness” or “similarity”

Turn scores into weights, reflecting 
the relevance of each element j to 
element i

Sum the inputs seen so far, 
weighted by their relevance (alpha 
value)



Inputs in self-attention computation play 3 
different roles at different points.
• Query: the current focus element (i)

• Key: the other elements (j) to which we 
compare the query.

• Value: used to compute the output for the 
current focus of attention



Self-Attention in Transformers: Single output

Basic idea: capture the 
key/query/value roles of the 
input through learnable weight 
matrices.

Score is the dot product between the query vector of xi and other element’s 
key vectors kj. All of dimensionality 1 * d. 
Since this can become quite big, we scale it by a factor proportional to the 
vector dimension.

Softmax (as before)

Final calculation is based on a weighted sum over the value vectors.

Here is what happens for a 
single output:



Self-Attention in Transformers: Entire sequence
Basic idea: capture the 
key/query/value roles of the input 
through learnable weight matrices.

We can now precompute all the 
queries, keys and values…

Also, we can:

• compute all the Q/K comparisons

• Scale

• Apply softmax

• Multiply by V

Suppose input is of length N. Break it up 
into N tokens, and represent it as matrix X: 
one token per row. Column dimensions are 
embeddings (dense representations for 
the input tokens).



What about order?

Simple solution:

• Combine the input 
representations X with 
positional embeddings. 

• E.g. x = Janet will back the bill.

Problem: 

For the edge cases (e.g. words at 
the end of very long sentences) 
we will have very few examples. 
These embeddings will be poorly 
trained.

Better idea: 

Use a static function which 
maps the integer position to a 
real value, which captures the 
relative position of tokens.

Image from: Jurafsky & Martin, Ch. 9



The Self-Attention Head
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The transformer block and 
transformer architectures



Transformer block

• Block structure:

1. Self-attention layer

2. Feedforward layer 
with residual 
connections.

• LayerNorm is used to keep 
the resulting values within 
narrow ranges to facilitate 
training.

• We normalize values 
with mean 0 and SD of 
1. Self-Attention Layer

Layer Normalisation

Feedforward Layer

Layer Normalisation

Input text or data:
x1, ..., xn

Prediction: yn

Residual connection:
Input is a concatenation of:
(a) Output of previous 

layer
(b) The input to the 

previous layer

This helps to avoid loss of 
information.



Multihead attention
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Multihead attention layer

• With a single Self-Attention head, 
we learn how to capture one type of 
relationship between input tokens. 

• Transformers usually have multiple 
attention heads in each block. This 
enables the model to learn different 
types of relationships.

• Operation:
• Apply SA in multiple heads, each with 

its own parameters.

• Concatenate the outputs of each

• Project to a fixed dimensionality

Head 1
WQ

1, WK
1 , WV

1

Input text or data:
x1, ..., xn

v

Prediction: yn

Head 3
WQ

3, WK
3, WV

3

Head 2
WQ

2, WK
2, WV

2

Concatenate outputs from all heads

Projection to a dimension d



Gains and costs

Training

• Attention computations can be parallelised (we just multiply Q,K,V 
matrices)

• Memory ~ O(N2) for input of length N, since we have N x N matrices to 
compute softmax between Q and K

• We no longer have sequential processing as in RNNs

Inference costs



Transformer architectures



Three classes of transformer models
• Encoders

• Use self-supervised learning to learn representations (e.g. of words in 
context)

• Transformer-based language models are encoders
• Well-known examples: BERT and its descendants (Devlin et al, 2019)

• Decoders
• Auto-regressive models for generation
• Well-known examples: the GPT family of models (Brown et al, 2021)

• Encoder-decoder transformers
• E.g. for machine translation, summarisation etc.
• Transformers were first proposed for MT (Vaswani et al, 2017).

Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2019). BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. Proceedings Of NAACL-HLT 2019, 4171–4186. 
https://doi.org/arXiv:1811.03600v2

Brown et al (2021). Language models are few-shot learners. https://arxiv.org/abs/2005.14165

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., & Kaiser, Ł. (2017). Attention Is All You Need. Proceedings of the 31st Conference on Neural Informaton Processing Systems (NIPS’17).

https://doi.org/arXiv:1811.03600v2
https://arxiv.org/abs/2005.14165


Decoders: causal language models

• We can train the transformer to predict the next word in a 
sequence, using teacher forcing. 

• Training objective: Cross-Entropy loss (as usual).

Big advantage:

• Model is not recurrent.

• All inputs/outputs can be computed in parallel.



Decoders: causal language models

• When we compare Q and K above, we are including both the 
elements before and after the query. 

• If we are decoding, we can’t look ahead.

• Once way around this is to set the upper triangular part of the matrix to zero 
(or –inf)

Credit: J&M, 3rd Ed, Ch 9



Training the transformer 
decoder

Task: predict the next word based 

on the entire previous context.

Teacher-forcing: during training, 

- compute loss based on 

prediction

- predict next token based on 

reference text

Attention goes from the current 

token, backwards (but not 

forwards).

Loss: Compare the prediction to 

the actual word using negative LL 

(or cross-entropy). took           the       dog       to          the

-log ythe

theNext word:

Loss

Softmax
over vocab

Linear (logits)

Transformer block
(Multiple transformer layers)

Embedding

Prefix

… … …

vet

-log yvet



Inference:
How do we actually 
sample?

At inference time, the decoder 

needs to sample the next token 

from the distribution.

What is the best strategy to do 

this?
took           the       dog       to          the

Softmax
over vocab

Linear (logits)

Transformer block
(Multiple transformer layers)

Embedding

Prefix

How to choose 
the next word?



Greedy sampling: choose 
the most likely token at 
each step.

Drawbacks:

Strategy can be too “local”

Choice always maximises the 

probability at that point, given the 

prefix.

Later tokens can make these 

choices look less optimal.

→ Can result in disfluent text.

→ Text can be subptimal because 

continuations do not 

necessarily fit in context.

took           the       dog       to          the

Softmax
over vocab

Linear (logits)

Transformer block
(Multiple transformer layers)

Embedding

Prefix

Greedy: 

ve
t
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Beam search: Maintain k
sequences and expand in 
parallel.

Algorithm:
H  current incomplete 
sequences

At each time-step, do:
1. Choose the k most likely 

tokens
2. Extend each sequence in H, to 

yield |H| * k sequences
3. Compute the probability of 

each resulting sequence.
4. Retain the k most probable 

sequences.

Drawback:
→ In some contexts, it can 
become very repetitive. Text 
degeneration.

took           the       dog       to          the
a

Softmax
over vocab

Linear (logits)

Transformer block
(Multiple transformer layers)

Embedding

Prefix
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The quality-probability tradeoff

Pure sampling = sampling according to the probability distribution. (Different from greedy, which always 
selects the most likely next token.) This can yield word salad.
Beam search can cause text degeneration (repetitiveness).

Some strategies manipulate the distribution:
• Top-k: at each step, restrict choice to the top k most probable tokens. Re-estimate probabilities 

accordingly.
• Top-p (nucleus): Sample only from tokens whose cumulative probability mass is p (e.g. 95%).
• Temperature: Use a temperature parameter to skew probabilities more (or less) towards high-

probability tokens.

Holtzman, A., Buys, J., Du, L., Forbes, M., & Choi, Y. (2020). The curious case of neural text degeneration. Proceedings of the 2020 Conference on Learning Representations (ICLR’20), 2540.

Fan, A., Lewis, M., & Dauphin, Y. (2018). Hierarchical neural story generation. Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (ACL’18), 1, 889–898. 
https://doi.org/10.18653/v1/p18-1082

https://doi.org/10.18653/v1/p18-1082


Bidirectional encoders (BERT, etc)

• Allow the self-attention mechanism to range over all the input. 

• In other words, self-attention can look both forward and back to 
learn richer contextual representations of tokens.

How is BERT trained?

• Corpus of actual sentences, unlabelled.

• Masked Language Modelling:
• In a given sentence, replace a proportion of words with <MASK>
• Train the model to predict the masked tokens in context.

• Next-Sentence Prediction:
• Predict whether sentence p follows sentence q in the original text.

• See: Devlin et al, 2019

Variation

• SpanBERT (Joshi et al, 2020) train a BERT model to predict masked 
spans of arbitrary length.

Joshi, M., Chen, D., Liu, Y., Weld, D. S., Zettlemoyer, L., & Levy, O. (2020). SpanBERT: Improving Pre-training 
by Representing and Predicting Spans. Transactions of the Association for Computational Linguistics, 8, 64–
77. https://doi.org/doi.org/10.1162/tacl a 00300

Images: J&M Ch. 11

https://doi.org/doi.org/10.1162/tacl%20a%2000300


Multimodal encoders

• Extension of the BERT idea, but
combine visual and linguistic 
inputs.

• Input: large corpus of images with 
corresponding descriptions.

• Masked objective: mask words 
and/or image regions

• Instead of next-sentence 
prediction: image-sentence 
alignment probability.

• Example: VisualBERT

Li, L. H., Yatskar, M., Yin, D., Hsieh, C.-J., & Chang, K. (2019). VisualBERT: A simple and performant baseline for vision and language. ArXiv Preprint 1908.03557. 
https://doi.org/10.1007/s11159-020-09831-4

NB: Visual backbone can 
itself be a pretrained CNN.

https://doi.org/10.1007/s11159-020-09831-4


How should we use such encoders?

• The goal is transfer learning.

• Train model on a large dataset, acquiring rich representations (of 
language, or something else).

• Once pretrained, model can serve as the foundation for other 
applications.

• Fine-tune the model with labelled data.

• Should need less data given the pre-training.

• E.g.: Add a feedforward layer on top of BERT to perform sentiment 
classification of tweets.



Back to the encoder-decoder idea

• The first transformer was an 
encoder-decoder for Machine 
Translation (Vaswani et al, 2017).

• Notice how the decoder attends 
both to the output of the encoder, 
and to its own preceding predictions.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., & Kaiser, Ł. (2017). Attention Is All You 
Need. Proceedings of the 31st Conference on Neural Information Processing Systems (NeurIPS’17).



Beyond text
• Transformers have in recent years become prominent in other fields.

Computer vision

• Vision transformers (e.g. Dosovitsky et al, 2020)

• Represent image as a mosaic of fixed-size areas (16*16 pixel). 

• Trained with similar objectives as BERT.

Speech

• Wav2Vec 2 (Baevski et al, 2020)

• Extract features from speech using a CNN

• Learn rich representations using a Transformer.

Dosovitskiy, A., Beye, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., & Houlsby, N. (2020). An image is worth 16x16 words: 
Transformers for image recognition at scale. ArXiv, 2010.11929.

Baevski, A., Zhou, H., Mohamed, A., & Auli, M. (2020). wav2vec 2.0: A Framework for Self-Supervised Learning of Speech Representations. ArXiv, 200611477, 1–19.



LLMs now
Going beyond the language modelling objective



Many contemporary LLMs are decoders

• Recent models generalize the language model objective: Generate text based on a prompt.

• Models of sufficient size (#parameters) trained on very large datasets display very flexible 
capabilities.

LANGUAGE MODEL 

Input prefix:
Prompt or instruction

Data or text.

Output text = continuation



Size matters

LM performance, measured in terms of loss on a 
held-out set, scales with model size, dataset size and 
amount of compute.

“Performance depends strongly on scale, weakly on 
model shape (e.g. depth vs width)”.

(More recent results suggest a somewhat different 
picture.)

Kaplan, J.,et al. (2020). Scaling Laws for Neural Language Models (arXiv:2001.08361). arXiv. http://arxiv.org/abs/2001.08361

Implications:

● Increasing focus on very large datasets 
and models

● Significant computing resources

Hoffmann, J., et al.. (2022). Training Compute-Optimal Large Language Models (arXiv:2203.15556). arXiv. https://doi.org/10.48550/arXiv.2203.15556

http://arxiv.org/abs/2001.08361
https://doi.org/10.48550/arXiv.2203.15556
https://doi.org/10.48550/arXiv.2203.15556


Pretraining vs in-context learning

Pretraining: unsupervised, 
based on the LM objective. 
Model should develop core 
knowledge/skills (of what?)

In-context learning: 
training in the context of a 
specific task (e.g. translate 
from L1 to L2). How does 
this happen?

Method 1: Fine-tune (with or 
without explicit instructions) Method 2: Few-shot 

Method 3: Zero-shot

Brown, T. B., et al. (2020). Language Models are Few-Shot Learners. Proceedings of Advances in 
Neural Information Processing Systems 33 (NeurIPS’20), 1877–1901. 
http://arxiv.org/abs/2005.14165

http://arxiv.org/abs/2005.14165


Summary of the contemporary picture 
(partial)

35

Pretrained 
model

Fine-tuning

Self-supervised using 
LM objective.
Can rely on large 
amounts of existing 
text.

On input-output pairs, such as:
• Data-text (data to text)
• Text-text (machine translation, 

summarisation)

In-context learning

No finetuning.
Give model some examples. Model 
generalizes to new inputs with no gradient 
updates. 

Involve 
modifications 
to the model 
(gradient 
updates)



Is language modelling the only objective we 
need?



Mcguffie, K., & Newhouse, A. (2020). The radicalization risks of GPT-3 and advanced neural language models. Technical Report, 
Middlebury Institute of International Studies at Monterey.

GPT-3, zero-shot (no fine-tuning)

GPT-3, few-shot (with a handful of “conspiracy” 
examples), i.e. “in-context” learning.

An example from GPT-3

Model initially generates 

factual, “objective” 

response to query.

In a few-shot setting, with 

some “toxic” examples, the 

output looks very different.

Clearly dependent on 

pretraining data.



Large NLG models are hard to control

Too much data

Datasets are extremely large and opportunistically sourced. 

Hard to ensure that data does not contain harmful content.

Data is also not representative of social, demographic and ethnic diversity. 

Models are very large, nonlinear and stochastic

This makes models harder to control.

Output can be irrelevant to a user’s query or intent.

It can also be harmful or toxic.

→ How can we ensure that models generate relevant and non-harmful content?

Bender, E. M., Gebru, T., McMillan-Major, A., & Shmitchell, S. (2021). On the Dangers of Stochastic Parrots: Can Language Models Be Too Big? Proceedings of the Fourth ACM Conference on Fairness, Accountability, and 
Transparency (FAccT’21).



Summary of the contemporary picture -- modified
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Pretrained 
model

Fine-tuning

Self-supervised using 
LM objective.
Can rely on large 
amounts of existing 
text.

On input-output pairs, such as:
• Data-text (data to text)
• Text-text (machine translation, 

summarisation)

In-context learning

Instruction tuning

Data consists of prompts/instructions + 
input/output pair.
Model is fine-tuned to learn to follow 
instructions.

No finetuning.
Give model some examples. Model 
generalizes to new inputs with no gradient 
updates. 

Involve 
modifications 
to the model 
(gradient 
updates)



Summary of the contemporary picture -- modified
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Pretrained 
model

Fine-tuning

Self-supervised using 
LM objective.
Can rely on large 
amounts of existing 
text.

In-context learning

Instruction tuning

Instruction + input/output pair

Explain how to make linguine with 
tomato sauce.

Ouyang, L., Wu, J., Jiang, X., Almeida, D., Wainwright, C. L., Mishkin, P., Zhang, C., Agarwal, S., Slama, K., Ray, A., Schulman, J., 
Hilton, J., Kelton, F., Miller, L., Simens, M., Askell, A., Welinder, P., Christiano, P., Leike, J., & Lowe, R. (2022). Training language 
models to follow instructions with human feedback (arXiv:2203.02155). arXiv. https://doi.org/10.48550/arXiv.2203.02155

To make linguine…

Buy some durum flour…

Tomatoes…

Compare 
against 
reference 
outputs.
Update model.

https://doi.org/10.48550/arXiv.2203.02155


But all of this is supervised.

We are still finetuning models based on their token prediction, and

comparing to the human-written reference text.

→ This makes the model a “parrot”. There is more than one way to respond 

to an instruction, and human references do not cover the whole space.

→ This method only allows for positive feedback (model is shown what it 

should do, but not what it can’t).

→ If a model is asked to perform a task which it has no knowledge of, it will 

still try to generate something. I.e. it will lie or make something up.

→ If a model’s pretraining data contains harmful text, we still have no way 

of ensuring it won’t output such text.

Goldberg, Y. (2023). Reinforcement Learning for Language Models. 
https://gist.github.com/yoavg/6bff0fecd65950898eba1bb321cfbd81

https://gist.github.com/yoavg/6bff0fecd65950898eba1bb321cfbd81


Summary of the contemporary picture -- completed
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Pretrained 
model

Fine-tuning

Self-supervised using 
LM objective.
Can rely on large 
amounts of existing 
text.

In-context learning

Instruction tuning

Involve 
modifications to 
the model 
(gradient 
updates)

Reinforcement 
learning with 

human feedback

Train a policy based on human 
feedback to predict which 
response is appropriate given 
a prompt/query.
Fine-tune the model with this 
policy.



Zooming in on RLHF
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Pretrained model

Fine-tuning

Self-supervised using 
LM objective.

Can rely on large 

amounts of existing 

text.

In-context learning

Instruction tuning

Reinforcement 

learning with human 
feedback

A: To make linguine…

2. Human Feedback and reward model: 
Rank answers for truthfulness, helpfulness 
and harmlessness
→ B >> A >> C
Use this data to learn how to predict a 
“reward” based on human preferences.

3. Reinforcement learning:

Prompt the LM with a new instruction. 
Score the output with a reward.
Update the LM with the reward as 
feedback.

1. Instruction + input/output pair

Explain how to make linguine with tomato 

sauce.

B: Buy some durum flour…

C: Tomatoes…



Summary of the contemporary picture -- completed
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Pretrained model

Fine-tuning

Self-supervised using 
LM objective.

Can rely on large 

amounts of existing 

text.

In-context learning

Instruction tuning

Involve 

modifications to 

the model 

(gradient 

updates)

Reinforcement 

learning with human 
feedback

Train a policy based on 

human feedback to predict 

which response is 

appropriate given a 
prompt/query.

Fine-tune the model with 

this policy.



Where does this leave us?

There are some very important open questions:

Reinforcement learning and instruction tuning are intended to “align” 
models with human communicative intentions and social norms.

Here are some important open areas of research:

→ RLHF is a very expensive method. Can it be (partially) automated?
→ Who are we aligning to? It is possible that our use of RL is still prey to 

bias.
→ Models still output harmful or irrelevant or non-factual text. How can this 

behaviour be controlled?



Some current challenges



Fluency and potential misuse

47

Some investigators struggle to reach Comey. “Like Louis XVI, he 
doesn’t see the storm growing in the distance,” says the 
Democratic operative. The lack of specifics, even from surrogates 
on Trump’s behalf, forces well-known Democrats to point out the 
obvious.

Uchendu, A., Ma, Z., Le, T., Zhang, R., & Lee, D. (2021). TURINGBENCH: A Benchmark Environment for Turing Test in the Age of Neural Text Generation. ArXiv http://arxiv.org/abs/2109.13296

Holtzman, A., Buys, J., Du, L., Forbes, M., & Choi, Y. (2020). The curious case of neural text degeneration. ICLR
Ippolito, D., Duckworth, D., Callison-Burch, C., & Eck, D. (2020). Automatic Detection of Generated Text is Easiest when Humans are Fooled. ACL

• Some success at detecting auto-generated text automatically. 
• Human detection accuracy: at chance, and worse as the model gets larger.

• Fluency-diversity trade-off:

• More fluency → lower detectability by humans

• Statistical patterns (e.g. “burstiness”, lexical diversity) distinguish human from model text. Can be 

picked up by automatic classifiers.

• This varies depending on the decoding algorithm (i.e. how you actually sample from the vocab 

during the sequence prediction task).

http://arxiv.org/abs/2109.13296


Hallucination and omission

E2E Dataset (restaurant recommendations)

Input: semantic representations (Dusek et al, 2018)

Dušek, O., Novikova, J., & Rieser, V. (2018). Findings of the E2E NLG Challenge. Proceedings of the 11th International Natural Language Generation Conference (INLG’18), 322–328. https://doi.org/10.18653/v1/w18-6539
Faille, J., Gatt, A., & Gardent, C. (2021). Entity-based semantic adequacy for data-to-text generation. Findings of the Association for Computational Linguistics: EMNLP 2021. https://aclanthology.org/2021.findings-
emnlp.132/
Rohrbach, A., Hendricks, L. A., Burns, K., Darrell, T., & Saenko, K. (2018). Object Hallucination in Image Captioning. Proceedings Ofthe 2018 Conference on Empirical Methods in Natural Language Processing (EMNLP’18), 
4035–4045. https://doi.org/10.18653/v1/d18-1437
González Corbelle, J., Bugarín-Diz, A., Alonso-Moral, J., & Taboada, J. (2022). Dealing with hallucination and omission in neural Natural Language Generation: A use case on meteorology. Proceedings of the 15th International 
Conference on Natural Language Generation, 121–130. https://aclanthology.org/2022.inlg-main.10

WebNLG Example (Faille et al, 2021)

Image-to-text captioning model.

Input: image (Rohrbach et al, 2019)
Weather report (Gonzalez-Corbelle et al, 2022)

https://doi.org/10.18653/v1/w18-6539
https://aclanthology.org/2021.findings-emnlp.132/
https://aclanthology.org/2021.findings-emnlp.132/
https://doi.org/10.18653/v1/d18-1437
https://aclanthology.org/2022.inlg-main.10


Examples of omission

WebNLG Example (Faille et al, 2021)

Example shows both omitted information (underlined) and hallucinated information.



A typology of hallucinations

The intuition:

Hallucination occurs when output text has no basis in the input, or contradicts facts.

Ji et al 2023’s classification:

Intrinsic hallucination: The output directly contradicts the source input.

Extrinsic hallucination: The output cannot be directly verified from the source.

It isn’t always so straightforward. Which of the following would you accept as true?

Ji, Z., Lee, N., Frieske, R., Yu, T., Su, D., Xu, Y., Ishii, E., Bang, Y., Madotto, A., & Fung, P. (2022). Survey of Hallucination in Natural Language Generation. ACM Computing Surveys, 1(1). http://arxiv.org/abs/2202.03629

There will be showers.

It will be wet.

It will be  very wet.

It will be cold.

http://arxiv.org/abs/2202.03629


Pragmatics and “sycophancy”

51

A lot depends on how you ask. Sometimes models seem to take for 
granted the assumptions (presuppositions) behind an incorrect question.

Output generated on 3 December, 2023



Jailbreak attacks

52

Through a combination of instruction tuning, RLHF and additional security measures, we can 
control how people use models.

But it is still possible to mount “attacks” to break through the checks and get the model to 
show its true colours.

https://pointer.kro-ncrv.nl/chatgpt-en-criminaliteit



Open questions and 
future challenges

1. Controlling output to be factual/faithful. 

Which architectures work best?

2. Distinguishing generated from human text to 

avoid harmful dual-use.

3. Developing effective methods to avoid bias 

an toxicity, including data curation.

4. Evaluating NLG models in realistic scenarios, 

not relying only on metrics.

5. Being open about how we develop models: 

data, architectures and alignment policies.

World

• Accuracy wrt input

• Faithfulness and 
truthfulness

Interpersonal 
(pragmatics, 
sociolinguistics)

• Alignment to communicative 
intent

• Avoidance of harm

Language

• Quality and fluency

• Variation
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